

INTERCHANGEABLE HEAD MILLING CUTTER

Flexible, wear-resistant, highly accurate:

The interchangeable head milling cutter, consisting of cutting head and clamping chuck, can be refitted with a new head in seconds. Axially and radially adjustable as well as extreme clamping force, it promises accurate concentricity. Exceptional performance with maximum cutting rates and reduced machining times.

This publication may not, in part or whole, be reproduced.

The publishers cannot be held responsible forany errors, omissions or changes of any kind. All products marked with "DIN", deviating from the dimensions listed in the catalogue, can be delivered, as long as they are in conformity with the DIN standard form.

Printed in Germany

Guhring KG P.O. Box 10 02 47 D-72423 Albstadt


Herderstraße 50-54 D-72458 Albstadt

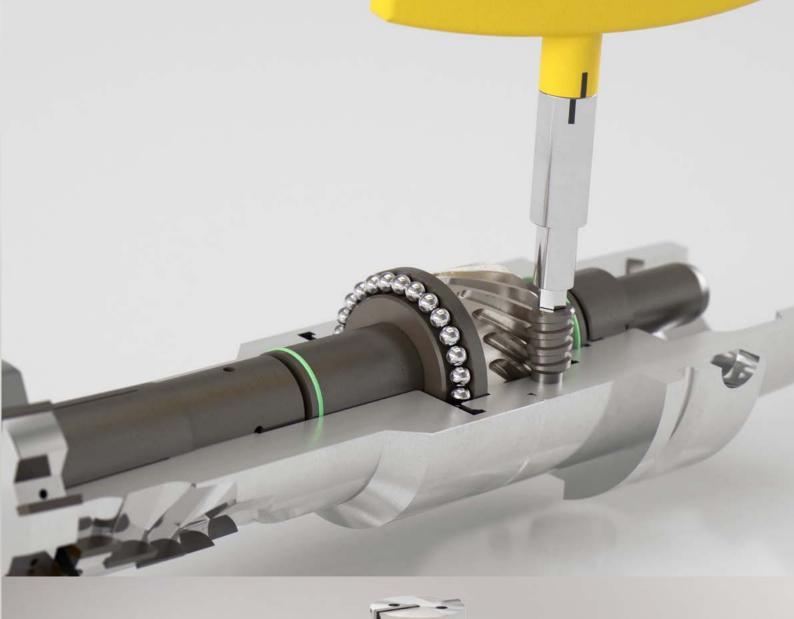
Tel.: +49 74 31 17-0 Fax. +49 74 31 17-21 279

Internet: www.guehring.de E-Mail: info@guehring.de With Guhring's roughing tool cylinder bore surfaces are mechanically roughened for a high tensile strength of thermally sprayed coatings.

ROUGHING TOOL

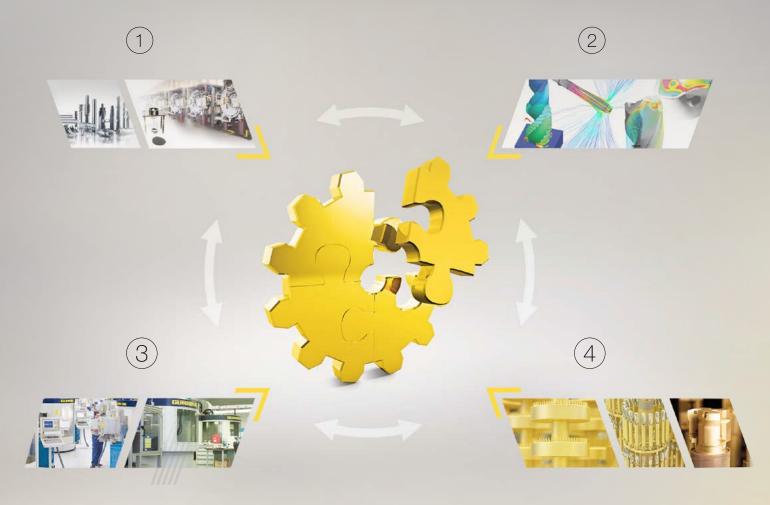
High-performance tool material combined with innovative technologies

Longstanding expertise


The development and manufacture of PCD/CBN tools has counted to Guhring's core activities for more than 30 years. At Guhring production facilities all over the world innovative complex tools with PCD/CBN cutting edges are produced for highly specialised machining operations.

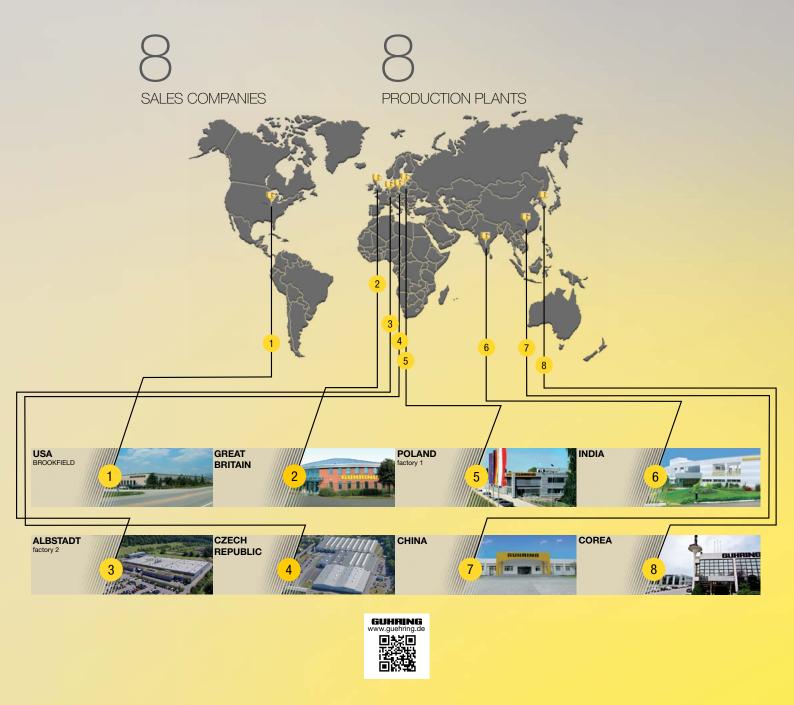
More performance, less tooling

PCD/CBN complex tools from Guhring guarantee short cycle times and high feed rates with consistent quality, exact repeatability and accuracy. High wear-resistance results in long tool life and permits efficient cutting data. High process reliability and accurate machining of difficult-to-machine materials is ensured. PCD/CBN complex tools combine several tools into one – therefore consideraby reducing the manufacturing process.



WATER JACKET BORE

Optimal co-ordination of all tool parameters thanks to own R&D sectors


- 1 TOOL MATERIALS
 Own carbide production
- ② GEOMETRIES Own R&D for tool development
- MACHINE & EQUIPMENT DIVISION Own machine tool and equipment divisions
- 4 COATINGS
 Own coating systems and own coating development

Everything from one supplier - comprehensive and global

Approximately 500 employees world-wide develop, produce and distribute innovative PCD/CBN tools at Guhring. Many of our customers value the many years of know-how in the conception of PCD/CBN special tools that we manufacture according to individual requirements and design for customers in the automotive industry, the aerospace industry or the mechanical engineering industry.

A world-wide net of production centres develops and produces Guhring PCD/CBN high-tech tools for all important global markets. With many years of know-how, Guhring provides support to its customers from process design to tool application for series production. Experts are internationally active looking after customers on-site. Production, service and contact persons are available world-wide from one supplier.

AUTOMOTIVE

	MOTOR	Page 10
	Cylinder head Cylinder head cover Crankcase	Page 12 Page 20 Page 24
	DRIVE	Page 32
	Gear Valve housing	Page 34 Page 37
	ANCILLARY COMPONENTS	Page 38
	Pump housing Turbocharger	Page 40 Page 42
04	AXLES AND STEERING	Page 44
	Wheel carrier Axle uprights Steering column Joint machining	Page 46 Page 48 Page 50 Page 52
05	BRAKES	Page 54
	Brake caliper Brake cylinder Brake disc	Page 56 Page 58 Page 60
	SPECIAL SOLUTIONS	Page 62

AEROSPACE LIGHTWEIGHT CONSTRUCTION

Page 70

07

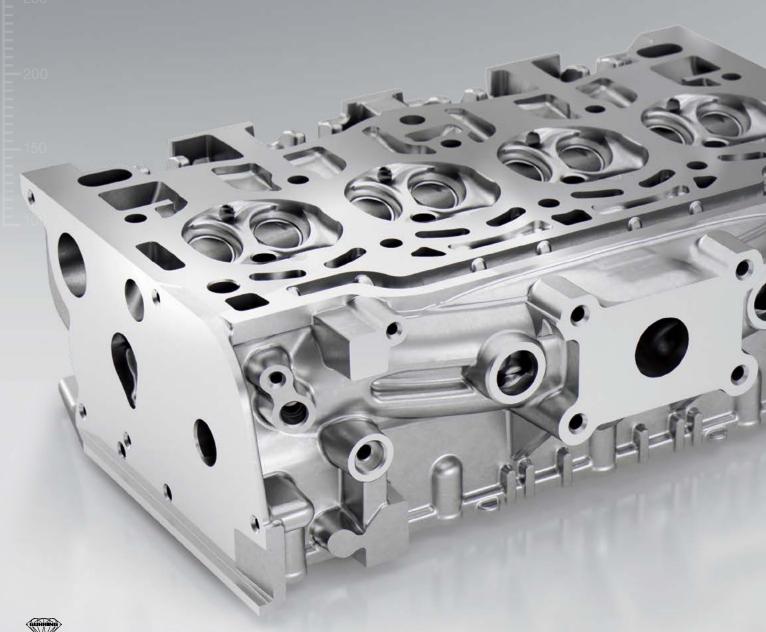
STANDARD TOOLS AND ISO INSERTS

Page 78

08


AUITON

SPECIAL REQUIREMENTS, PRECISE SOLUTIONS



Modern automotive manufacturing relies on the application of high specification materials that are sometimes difficult to machine. Typical components such as engine blocks, cylinder heads or transmission housings put special demands such as wear-resistance and accuracy and – fields of application ideally suited to PCD complex tools from Guhring.

On the following pages we present some tooling solutions developed by us for the engine and other automotive components, transmissions and chassis parts.

CYLINDER HEAD

HIGHEST PERFORMANCE THANKS TO HIGHLY ACCURATE MACHINING

Guhring designs and manufactures PCD tools for all machining tasks related to modern high performance engines. Machining componenets such as the cylinder head or crank case requires many closely positioned holes, the machining of which generates high temperatures. Due to such heat there is a risk of deformation of the precision holes. Guhring's PCD tools possess special cutting edge geometries. The risk of deformation is significantly reduced and accurate holes guaranteed.

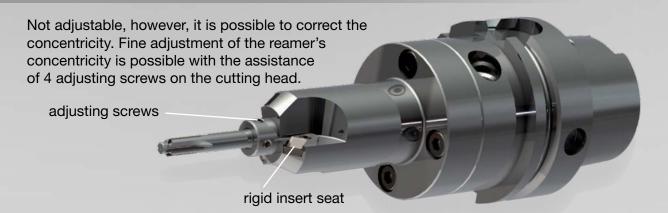
MOTOR Cylinder head

WATER JACKET BORE

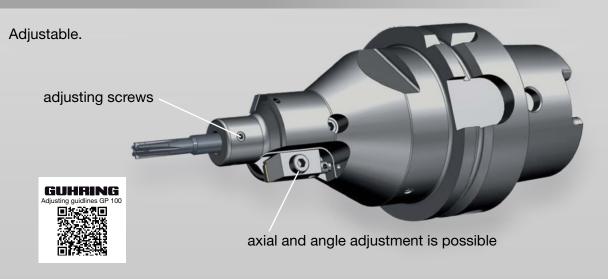
This system for chip evacuation is ideally suited for holes when chips are not permitted to enter inside the workpiece.

The special geometry of the water jacket drill ensures the chips are directed away from the workpiece. Contamination of the cylinder head is, therefore, greatly reduced.

FINISH MACHINING OF VALVE SEAT INSERT AND VALVE GUIDE PARENT METAL

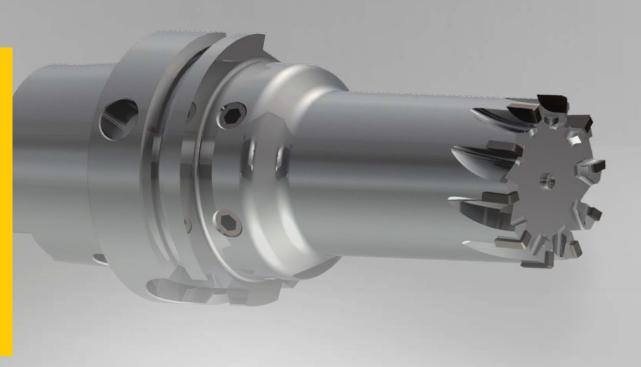

FINISH MACHINING OF VALVE SEAT INSERT AND VALVE GUIDE PARENT METAL

The diameter is adjustable with the use of the expansion joint.

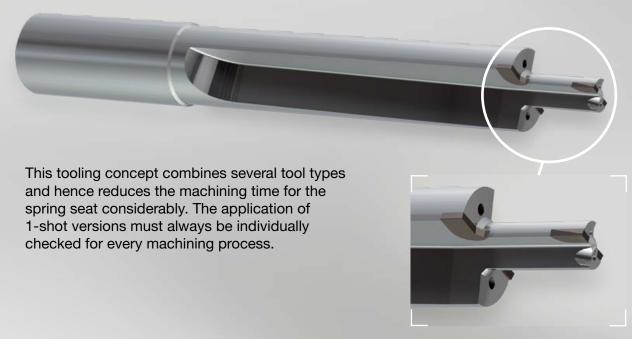


The reamer diameter is also adjustable with the use of the expansion screw.

FINISH MACHINING OF VALVE TRAIN GUIDE / INSERT



FINISH MACHINING OF VALVE TRAIN GUIDE / INSERT



MOTOR Cylinder head

CONTROL CUTS

SPRING SEAT TOOL

HVA MACHINING

The PCD-tipped option is also available as a solid carbide tool.

The specially developed cutting edge geometry as well as the arrangement of the cutting edges provide optimal accuracy and short cycle times while maintaining consistent quality.

HVA MACHINING

This 1-shot version combines the pre- and finish machining for the hydraulic valve compensation bore. The application of 1-shot versions must always be individually checked for every machining process.

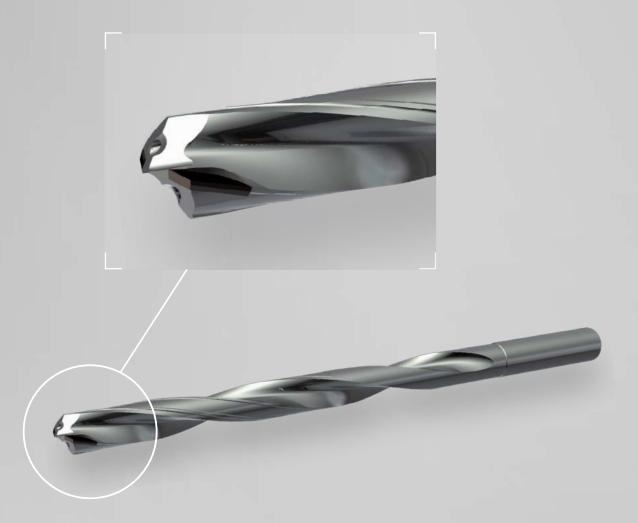
MOTOR Cylinder head


CAMSHAFT BEARING TOOL Z=1

PCD reamer for machining camshaft bearing seats in aluminium cylinder heads. The possibility of axial and radial adjustment of the cutting edges guarantees an individual adaptation to the machining task. With the user-friendly setting philosophy the cutting edges can be adjusted effortlessly from one side. In addition to this product, the adjusting device EV-600 is also available from Guhring to perform the radial and axial fine adjustment of the tool.

CAMSHAFT BEARING TOOL Z=6

The application of a spiral solid carbide shank guarantees not only rigidity but also perfect guidance. The cutting edge diameter can be re-adjusted via expansion screw.



FINISH MACHINING TAPPET BUCKET BORES

Thanks to the specially added cutting edge geometry it is possible to use a multi-fluted tool to accurately ream a hole with an interrupted cut. The cycle time compared to a single-fluted tool is reduced enormously.

Very high feed rates can be achieved with process reliability thanks to the optimised chip space geometry.

SPARK PLUG BORE

1-shot versions combine several tools into one and reduce the machining times.

The application of 1-shot version must always be individually checked for every machining process.

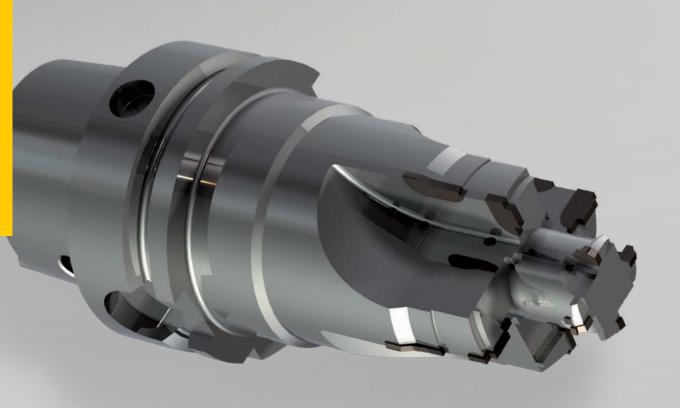
350

-300

-250

-200

150


_ 100

MOTOR Cylinder head cover

COMBINATION TOOL FOR CAMSHAFT BEARING KEYWAY

CONNECTION BORE

OIL DIPSTICK BORE

350

-300

-250

200

150

__100

CRANKCASE

MOTOR Crankcase

ROUGHING TOOL

Innovative production of diesel and petrol engines

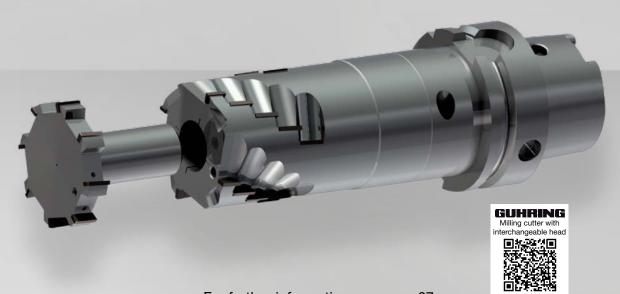
The thermal coating of the aluminium surface of cylinder bore surfaces makes the engines lighter and more efficient.

In co-operation, Guhring has developed a roughing tool for this process with which the high-tensile strength of the thermally sprayed coating is achieved. The cutting edge geometry is individually designed and manufactured for the customer dependent on the required profile depth.

The special cutting edge geometry produces a surface finish geometry similar to a dovetail on the aluminium cylinder bore surface. The result is a high-tensile strength of the thermal coating.

MOTOR Crankcase

RELIEF GROOVE


SEALING GROOVE MILLING CUTTER Ø 2 MM

THRUST BEARING

MILLING – CONTROL CUTS



For further information see page 67.

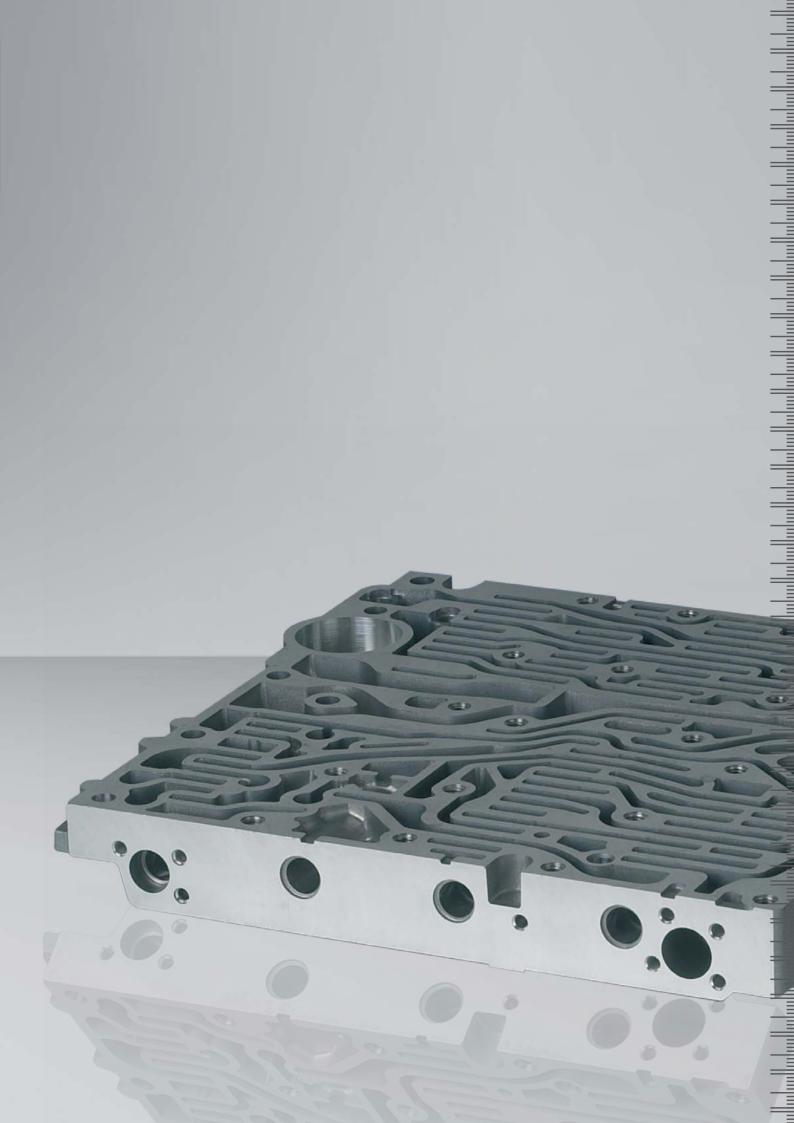
MOTOR Crankcase

PULSATION WINDOW

PRE-MACHINING BALANCE SHAFT BORE


WATER JACKET BORE

The required hole roughness is achieved via threaded wedge adjustment (TWA). The roughing insert can be adjusted independently of the diameter.


THERMOSTAT BORE

ACCURATE MACHINING

Independent of diameter and complexity all PCD tools from Guhring meet the highest demands on reliability and accuracy. This is especially important for machining the transmission. When being machined the thin-walled material of the transmission housing is liable to suffer vibrations making the machining process more difficult and endangering the accuracy. To counteract vibration, PCD tools possess special cutting edge properties – for guaranteed process reliable machining.

DRIVE Gear

MAIN DRIVE SHAFT BORE Ø 280 MM

With this system a very light maximum permitted weight < 18 kg was achieved (with a diameter of 280 mm).

The tool is supplied according to the requirements of the customer.

The facts at a glance:

- Leightweight design for finish machining (transmission housing)
- Tolerances to IT6
- Low weight
- Low tilting moment
- Every diameter with z=6
- On customer request all diameters can be supplied adjustable. Hence minor adjustments can be carried out without a problem.

SAFETY CUT BELL HOUSING

MAIN BEARING BORE FRONT AND REAR

PINTLE MACHINING

AUXILIARY DRIVE

OUTPUT SIDE SEALING GROOVE

COMBINATION DRILLING, REAMING, MILLING

DRIVE Valve housing

PILOT DRILLING

PRE-MACHINING

FINISH MACHINING

ANCILLARY C

MACHINING IN PERFECTION

OMPONENTS

Ancillary components – a far reaching and broad term.

According to general definition, ancillary components are assembly units not directly mounted to the engine block.

Ancillary components are also an important part of the engine, i.e. the cylinderhead performs a very important function.

Ancillary components are, for example, starter motor, radiator, alternator, pump housing, turbocharger, fan, carburretor etc. Therefore, the machining of these components also requires maximum precision.

Because with an engine every part and every component is important no matter how minute and unspectacular they appear.

ANCILLARY COMPONENTS

Pump housing

FINISH MACHINING MAIN OIL BORE

GROOVE MAIN OIL BORE

OVER TURNING JOURNAL, FINISH MACHINING BEARING BORE

PRE-MACHINING MAIN OIL BORE

CONTROL BORE

ANCILLARY COMPONENTS

Turbocharger / Compressor wheel

PILOT DRILLING SHAFT BORE

PRE-MACHINING SHAFT BORE

REAMING SHAFT BORE

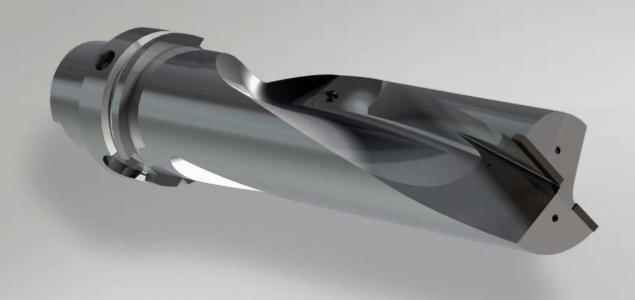
BLADE MACHINING

AXLES AND

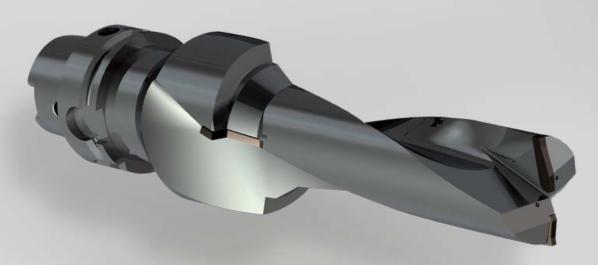
INNOVATIVE SOLUTIONS FOR SPECIAL REQUIREMENTS

Automotive components relating to axles and steering are kinetically exposed to high stresses. The quality and accuracy requirements when machining them is accordingly high. Aluminium wrought alloys are especially tough and soft and are therefore applied to withstand these stresses and to ensure a certain flexibility. However, when machining aluminium lengthy chips are created. Guhring's PCD tools guarantee an optimal chip breaker ability and, therefore, a better swarf evacuation.

STEERING



AXLES AND STEERING

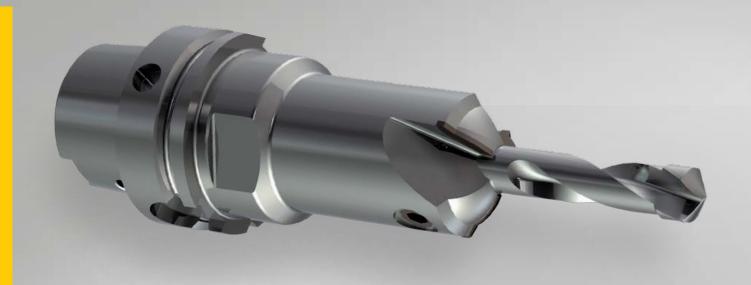

Wheel carrier

DRILLING MAIN BORE


MAIN BORE THROUGH DRILLING AND PARALLEL LANDS

REAMING MAIN BORE

REAMING AND MILLING **HUB BORES**


CONTROL CUTS

AXLES AND STEERING

Axle uprights

SPHERICAL BORE

SPHERICAL MILLING CUTTER

MAIN BORE

BORE FOR RUBBER BUSHING

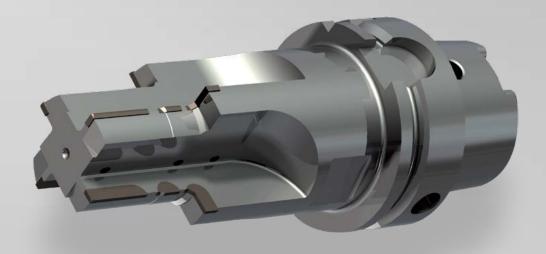


Drilling, profile and surface milling

AXLES AND STEERING

Steering column

SEAL CONNECTION


SERVO GEAR UNIT BORE


MAIN BORE

PINION BORE

STEERING SPINDLE BORE

AXLES AND STEERING

Joint machining

HARD MACHINING

High Performance Milling with Guhring PCBN ball track mills

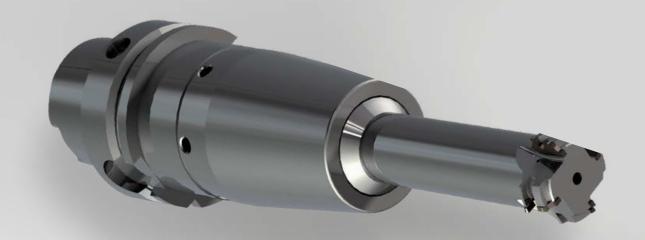
SOFT MACHINING

Solid carbide or CBN tipped ball track mills

BRAKES

SAFETY THANKS
TO HIGHEST ACCURACY

Components of the braking system in automotive manufacturing are exposed to particularly heavy loads. They must consistently withstand the effect of high forces and must not show any signs of wear. For these components therefore especially wear-resistant and robust materials are applied – that are again difficult to machine. Where cast iron was previously applied, today aluminium is almost exclusively used as workpiece material in order to manufacture lighter and therefore more energy efficient components. These tough materials can be perfectly machined with PCD tools from Guhring. They guarantee the machining of safety relevant components to the highest accuracy.

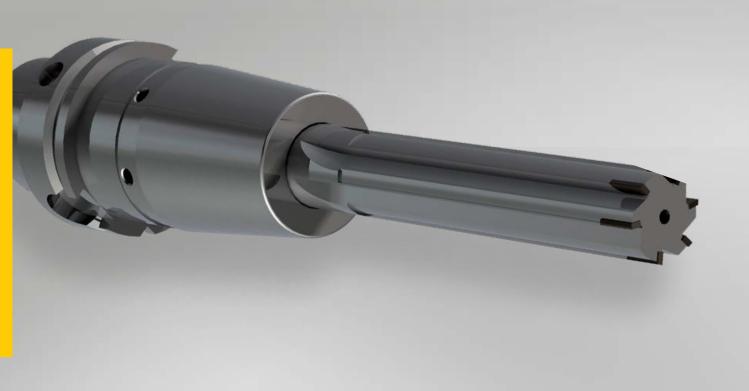


BRAKES Brake caliper

PROTECTIVE CAP COLLAR

SEAL RING GROOVE

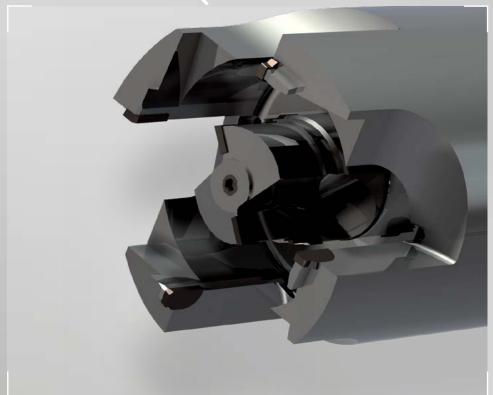
SPRING CAP BORE



FASTENING SURFACES

BRAKES Brake cylinder


MAIN BORE

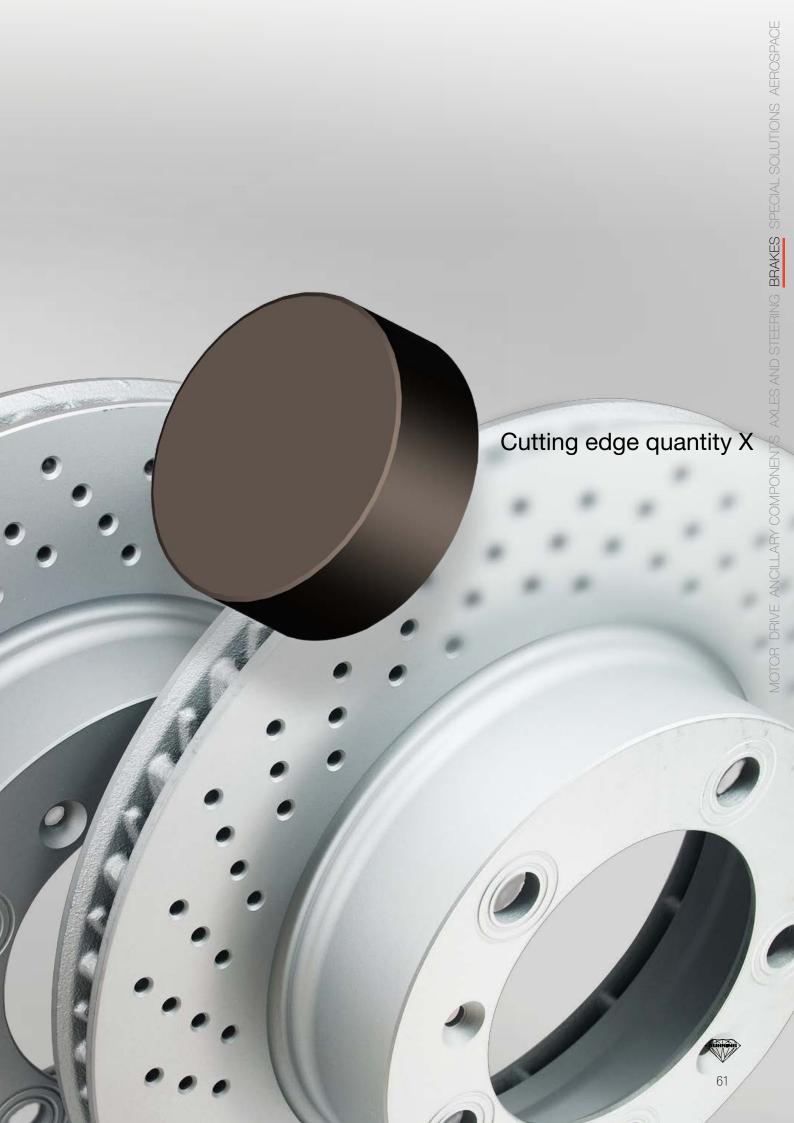


OIL INLET CONNECTION

PILOT DRILLING AND MAIN CONNECTION

combined internal and external machining

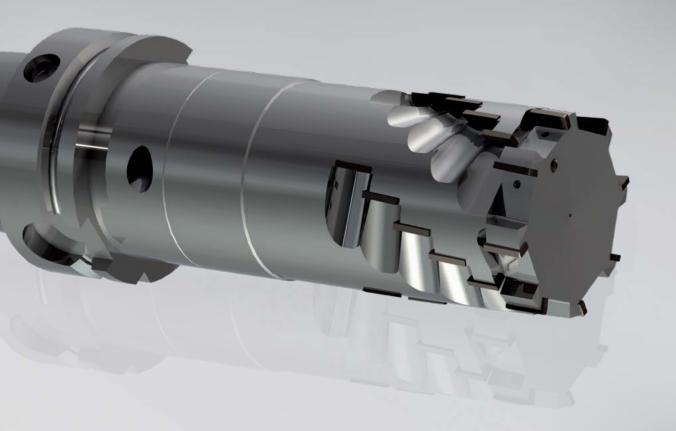
BRAKES Brake disc


SOLID CBN INDEXABLE INSERTS

Machining: Material to be machined:

Holding in: Cooling: brake discs/rolls GG/hardened steels clamping holder

soluble oil or dry machining



SPECIAL S

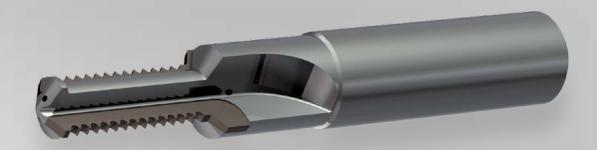
SPECIAL SOLUTIONS FOR INDIVIDUAL REQUIREMENTS

Whether simultaneous machining of internal and external contours, the combination of several operating steps or special holes where no chips are allowed to enter inside the workpiece: For any machining task Guhring has an individual solution.

Complex tools from Guhring combine multiple machining steps into one tooling solution and thus save tools and tool change time. Furthermore, Guhring has developed innovative tools in order to enable the use of PCD cutting edges for applications that so far this high-performance material has not been available for, as for example, PCD head-tipped reamers from Ø 2.5 mm.

SPECIAL SOLUTIONS

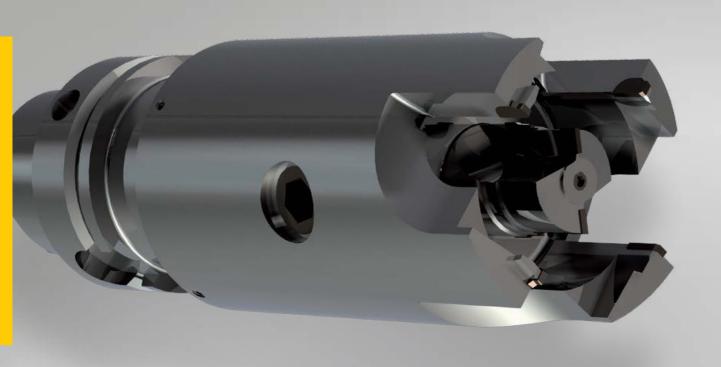
CONTOUR GANG HOB


Form inserts can be individually replaced.

BELL MILLING CUTTER WITH EXTERNAL RING

Bell milling cutter with external ring for rigidity: Ensuring maximum speed and quality.

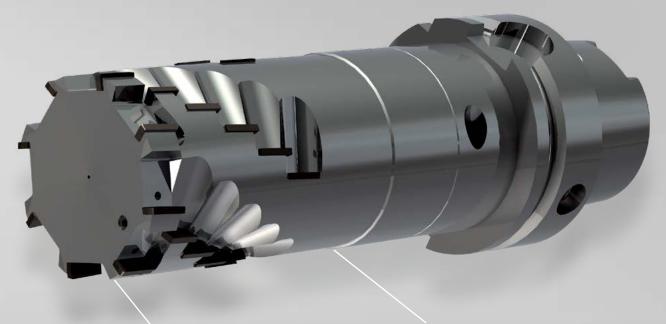
THREAD MILLING CUTTER


WATER JACKET BALL

The risk of blocking the hole with chips is drastically minimised thanks to specially formed wedges and optimal cooling.

SPECIAL SOLUTIONS

INTERNAL AND EXTERNAL MACHINING


REAMERS COMBINED WITH INSERTION MILLING CUTTERS

MILLING CUTTER WITH INTERCHANGEABLE HEAD

The two-piece milling cutter consists of an interchangeable head and a chuck. Instead of replacing the complete milling cutter, the head can be replaced in seconds when required.

A locating pin prevents the cutting edges of the milling head coming into contact with the basic body and the risk of edge damage. Accurate concentricity is ensured thanks to axial and radial adjustment as well as the extreme clamping force. tool and workpiece wear is minimised.

Interchangeable head

Basic body

Possible from \emptyset 32 mm to \emptyset 100 mm. The head performs the main machining function.

SPECIAL SOLUTIONS

PCD/CBN REAMERS

PCD/CBN reamers: Small diameters with multiple cutting edges

Up to now, the miniaturisation of multi-fluted reamers with PCD or CBN cutting edges has set the manufacturers difficult boundaries. However, these have now been crossed by Guhring and makes the machining of small diameters possible with the highest accuracy (≥ IT6) and a large number of cutting edges.

With immediate effect, Guhring now supplies PCD- or CBN-tipped reamers from

- Ø 2.0 mm with 4 cutting edges
- Ø 3.0 mm with 6 cutting edges

For the machining of blind holes the tools have a central coolant duct. The reamers for the machining of through holes have the coolant ducts exiting parallel to the cutting edge. This way, even in the smallest holes an optimal supply of coolant to the cutting edges with conventional cooling as well as with minimal quantity lubrication and an effective evacuation of the chips from the hole is ensured.

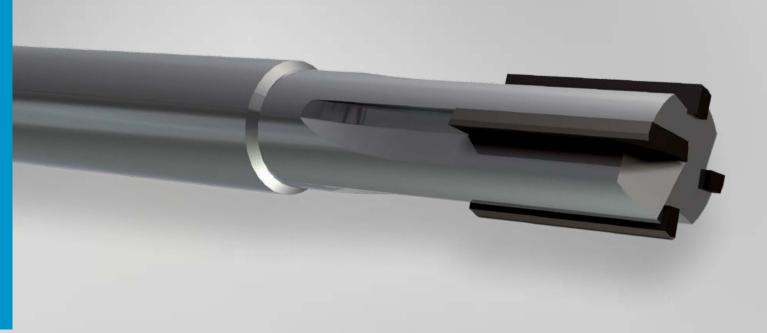
The combination of the small diameters, the large number of cutting edges and the effective internal cooling offers the user maximum performance for superfinishing small blind hole and through hole diameters with PCD- or CBN-tipped reaming tools!

AEROSPACE LIGHTVVEIGHT

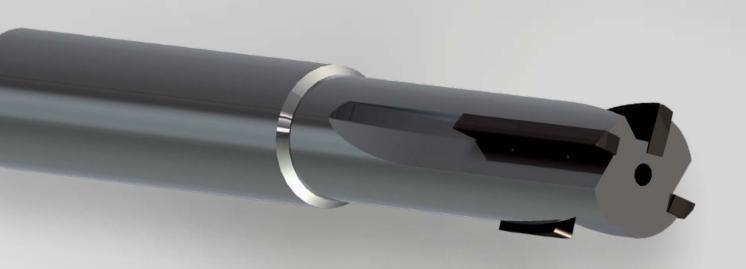
ECONOMICALLY MACHINING COMPOSITES

Composites, especially the way they are applied in the aerospace industry, convince with highest flexibility, stability, strength and low weight. Their properties, however, are found to have a tendency to delaminate that makes them difficult to machine.

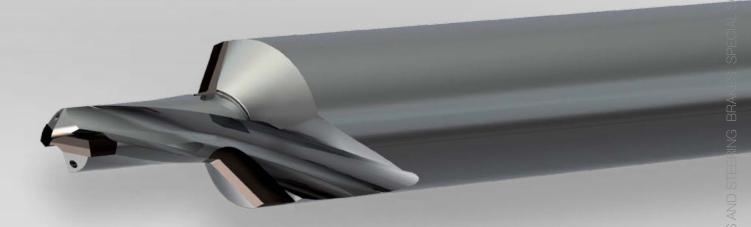
PCD tools prevent the delamination of abrasive materials thanks to their extremely sharp and wear-resistant diamond cutting edges.



CONSTRUCTION



AEROSPACE LIGHTWEIGHT CONSTRUCTION

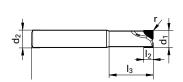

UPPER-LOWER SHELL MACHINING ROUGHING AND FINISHING CUT

COMPRESSION MILLING CUTTER

COUNTERSUNK-HEAD RIVET DRILL

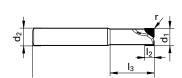
Ø 4 mm – 20 mm standard. Smaller diameters are available on request.

SLOT DRILL (2-FLUTED)



SLOT DRILL (3-FLUTED)

OLUTIONS AEROSPACE

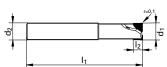

Standard Guhring std.	
Tool material PCD	
Surface bright	
Shank design HA	
Helix 0°	
Cooling axial	
Discount group 110	

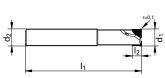
d1	d2	l1	12	13	14	Z	Code no.	Availability
mm	mm	mm	mm	mm	mm			Availability
4.000	6.000	51.00	6.00	15.00	36.00	2	4,000	
5.000	6.000	51.00	8.00	15.00	36.00	2	5,000	
6.000	6.000	57.00	8.00	21.00	36.00	2	6,000	
8.000	8.000	63.00	8.00	27.00	36.00	2	8,000	
8.000	8.000	63.00	12.00	27.00	36.00	2	8,001	
10.000	10.000	72.00	8.00	32.00	40.00	2	10,000	
10.000	10.000	72.00	16.00	32.00	40.00	2	10,001	
12.000	12.000	83.00	8.00	38.00	45.00	2	12,000	
12.000	12.000	83.00	16.00	38.00	45.00	2	12,001	
14.000	14.000	83.00	8.00	38.00	45.00	2	14,000	
14.000	14.000	83.00	16.00	38.00	45.00	2	14,001	
16.000	16.000	100.00	12.00	52.00	48.00	2	16,000	
16.000	16.000	100.00	20.00	52.00	48.00	2	16,001	
18.000	18.000	100.00	12.00	52.00	48.00	2	18,000	
18.000	18.000	100.00	20.00	52.00	48.00	2	18,001	
20.000	20.000	100.00	12.00	50.00	50.00	2	20,000	
20.000	20.000	100.00	20.00	50.00	50.00	2	20,001	lacktriangle

Guhring no.	5493
Standard	Guhring std.
Tool material	PCD
Surface	bright
Shank design	DZ
Helix	0°
Cooling	axial
Discount group	110

d1	d2	l1	12	13	14	Z	Code no.	Availability
mm	mm	mm	mm	mm	mm			Availability
4.000	6.000	70.00	6.00	15.00	55.00	2	4,000	•
5.000	6.000	70.00	8.00	15.00	55.00	2	5,000	•
6.000	6.000	75.00	8.00	21.00	54.00	2	6,000	
8.000	8.000	100.00	8.00	27.00	73.00	2	8,000	•
8.000	8.000	100.00	12.00	27.00	73.00	2	8,001	•
10.000	10.000	100.00	8.00	32.00	68.00	2	10,000	•
10.000	10.000	100.00	16.00	32.00	68.00	2	10,001	•
12.000	12.000	100.00	8.00	38.00	62.00	2	12,000	•
12.000	12.000	100.00	16.00	38.00	62.00	2	12,001	•
14.000	14.000	100.00	8.00	38.00	62.00	2	14,000	•
14.000	14.000	100.00	16.00	38.00	62.00	2	14,001	•
16.000	16.000	150.00	12.00	52.00	98.00	2	16,000	•
16.000	16.000	150.00	20.00	52.00	98.00	2	16,001	•
18.000	18.000	125.00	12.00	52.00	73.00	2	18,000	•
18.000	18.000	125.00	20.00	52.00	73.00	2	18,001	•
18.000	18.000	150.00	20.00	52.00	98.00	2	18,002	•
18.000	18.000	150.00	12.00	52.00	98.00	2	18,003	•
20.000	20.000	150.00	12.00	50.00	100.00	2	20,000	•
20.000	20.000	150.00	20.00	50.00	100.00	2	20,001	•

Guhring no.	3867
Standard	Guhring std.
Tool material	PCD
Surface	bright
Туре	DL100
Shank design	НА
Helix	0°

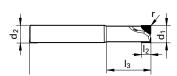




d1	d2	l1	12	Z	Code no.
inch	inch	inch	inch		
1/4	1/4	2 1/2	3/4	2	6.350
3/8	3/8	3	3/4	2	9.520
1/2	1/2	3	1	2	12.700
3/4	3/4	4	1	2	19.050

Availability	
on request	

Guhring no.	3870
Standard	Guhring std.
Tool material	PCD
Surface	bright
Туре	DL100
Shank design	НА
Helix	0°

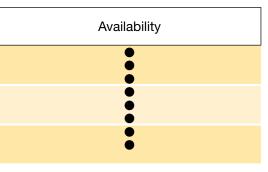


d1	d2	11	12	Z	Code no.
inch	inch	inch	inch		
3/8	3/8	3	1/2	3	9.520
1/2	1/2	3	1/2	3	12.700
3/4	3/4	3	1/2	3	19.050
1	1	4	1	3	25.400

Availability
on request
on request
on request
on request

Guhring no.	5495
Standard	Guhring std.
Tool material	PCD
Surface	bright
Shank design	НА
Helix	0°
Cooling	axial
Discount group	110

d1	d2	11	12	13	14	Z	Code no.
mm	mm	mm	mm	mm	mm		
14.000	14.000	83.00	8.00	38.00	45.00	3	14,000
14.000	14.000	83.00	16.00	38.00	45.00	3	14,001
16.000	16.000	100.00	12.00	52.00	48.00	3	16,000
16.000	16.000	100.00	20.00	52.00	48.00	3	16,001
18.000	18.000	100.00	12.00	52.00	48.00	3	18,000
18.000	18.000	100.00	20.00	52.00	48.00	3	18,001
20.000	20.000	100.00	12.00	50.00	50.00	3	20,000
20.000	20.000	100.00	20.00	50.00	50.00	3	20,001


Availability
•
•

Guhring no.	5496
Standard	Guhring std.
Tool material	PCD
Surface	bright
Shank design	DZ
Helix	0°
Cooling	axial
Discount group	110

ŧ	r ∕ ∤
d ₂	d d
1	l ₂
	l ₃

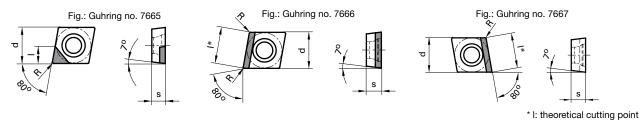
d1	d2	11	l2	l3	14	Z	Code no.
mm	mm	mm	mm	mm	mm		
14.000	14.000	100.00	8.00	38.00	62.00	3	14,000
14.000	14.000	100.00	16.00	38.00	62.00	3	14,001
16.000	16.000	150.00	12.00	52.00	98.00	3	16,000
16.000	16.000	150.00	20.00	52.00	98.00	3	16,001
18.000	18.000	150.00	12.00	52.00	98.00	3	18,000
18.000	18.000	150.00	20.00	52.00	98.00	3	18,001
20.000	20.000	150.00	12.00	50.00	100.00	3	20,000
20.000	20.000	150.00	20.00	50.00	100.00	3	20,001

STANDARD TOOLS AND ISO

HIGH-TECH EX-STOCK

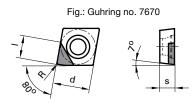

The focus of Guhring's PCD production is customer and application specific special solutions.

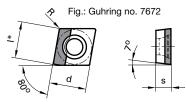
Furthermore, standard tools with PCD cutting edges are available with immediate effect for conventional machining tasks or industrial solutions. The ISO-insert program also includes standard PCD inserts as well as short clamping holders for the cost-effective re-tipping of complex tools.



INSERTS

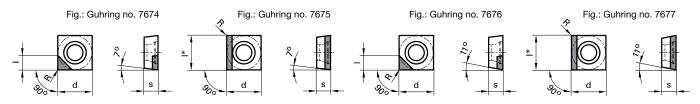
ISO indexable inserts PCD/CBNpage	80
ISO inserts for machining valve seat page	86
Short clamping holders KV400page	87
Threaded key adjustment unit	90
Indexable insert description	92
Tool materials PCD and CBN	96
	97
	98
Milling cutters page 1	100
PF 1000 G face milling cutterpage 1	104
PF 1000 face milling cutterpage 1	105




ISO indexable inserts, PCD-tipped, form C

								neeronean eathing point
	er no. = o. + code no.	ISO code	d mm	s mm	R mm	l/l* mm		Availability
7665	62,020	CCGW 060202 FN-AS	6.350	2.380	0.20	3.00	6128 2,501	•
7665	62,040	CCGW 060204 FN-AS	6.350	2.380	0.40	3.00	6128 2,501	
7665	93,020	CCGW 09T302 FN-AS	9.525	3.970	0.20	4.00	6128 3,500	
7665	93,040	CCGW 09T304 FN-AS	9.525	3.970	0.40	4.00	6128 3,500	•
7666	62,020	CCGW 060202 FL-AL	6.350	2.380	0.20	6.45	6128 2,501	
7666	62,040	CCGW 060204 FL-AL	6.350	2.380	0.40	6.45	6128 2,501	
7666	93,020	CCGW 09T302 FL-AL	9.525	3.970	0.20	9.67	6128 3,500	
7666	93,040	CCGW 09T304 FL-AL	9.525	3.970	0.40	9.67	6128 3,500	
7666	124,040	CCGW 120404 FL-AL	12.700	4.760	0.40	12.90	6128 5,001	
7666	124,080	CCGW 120408 FL-AL	12.700	4.760	0.80	12.90	6128 5,001	•
7667	62,020	CCGW 060202 FR-AL	6.350	2.380	0.20	6.45	6128 2,501	
7667	62,040	CCGW 060204 FR-AL	6.350	2.380	0.40	6.45	6128 2,501	
7667	93,020	CCGW 09T302 FR-AL	9.525	3.970	0.20	9.67	6128 3,500	
7667	93,040	CCGW 09T304 FR-AL	9.525	3.970	0.40	9.67	6128 3,500	•

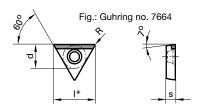
ISO indexable inserts, PCD-tipped, form C, finishing geometry

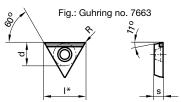


* I: theoretical cutting point

	der no. = no. + code no.	ISO code	d mm	s mm	R mm	l/l* mm	-	Availability
7670	62,020	CCGW 060202 FL-AS	6.350	2.380	0.20	3.75	6128 2,501	
7670	62,040	CCGW 060204 FL-AS	6.350	2.380	0.40	3.75	6128 2,501	
7670	93,020	CCGW 09T302 FL-AS	9.525	3.970	0.20	5.64	6128 3,500	
7670	93,040	CCGW 09T304 FL-AS	9.525	3.970	0.40	5.64	6128 3,500	
7672	62,020	CCGW 060202 FL-AL	6.350	2.380	0.20	6.45	6128 2,501	
7672	62,040	CCGW 060204 FL-AL	6.350	2.380	0.40	6.45	6128 2,501	
7672	93,020	CCGW 09T302 FL-AL	9.525	3.970	0.20	9.67	6128 3,500	
7672	93,040	CCGW 09T304 FL-AL	9.525	3.970	0.40	9.67	6128 3,500	•

80 **GUHRING**

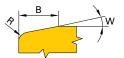

ISO indexable inserts, PCD-tipped, form S



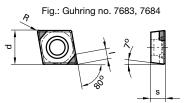
* I: theoretical cutting point

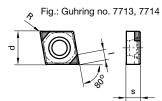
	r no. = o. + code no.	ISO code	d mm	s mm	R mm	l/l* mm	-	Availability
7674 7676	93,020 93,020	SCGW 09T302 FN-AS SPGW 09T302 FN-AS	9.525 9.525	3.970 3.970	0.20 0.20	4.00 4.00	6128 3,500 6128 3,500	•
7675	93,020	SCGW 09T302 FN-AL	9.525	3.970	0.20	9.67	6128 3,500	
7677	93,020	SPGW 09T302 FN-AL	9.525	3.970	0.20	9.67	6128 3,500	•

ISO indexable inserts, PCD-tipped, form T



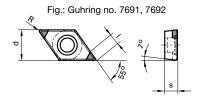
* I: theoretical cutting point


	er no. = o. + code no.	ISO code	d mm	s mm	R mm	l* mm		Availability
7664	112,020	TCGW 110202 FN-AL	6.350	2.380	0.20	11.00	6128 2,501	•
7664	163,020	TCGW 16T302 FN-AL	9.525	3.970	0.20	16.50	6128 3,500	
7663	92,020	TPGW 090202 FN-AL	5.560	2.380	0.20	9.60	6128 2,200	

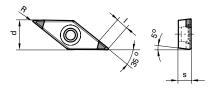

Cutting edge geometry

Туре	Edge rounding R	Negative land width B	Negative land angle W
Type A	no	-	-
Type B	no	0,20	20°
Type C	yes	-	-
Type D	yes	0,10	10°
Type E	yes	0,10	20°
Type F	yes	0,13	15°
Type G	yes	0,15	20°
Type H	yes	0,13	25°
Type I	yes	0,20	20°

ISO indexable inserts, CBN-tipped, form C, with screw clamping



	no. = . + code no.	ISO code	Tool material	Cutting edge geometry	d mm	s mm	R mm	l mm		Availability
7683	62,040	CCGW 060204 TN-DS	CBN 1023	Type B	6.350	2.380	0.40	2.43	6128 2,501	•
7683	93,040	CCGW 09T304 TN-DS	CBN 1023	Type B	9.525	3.970	0.40	2.82	6128 3,500	
7684	62,040	CCGW 060204 TN-DS	CBN 2028	Type B	6.350	2.380	0.40	2.43	6128 2,501	•
7684	93,040	CCGW 09T304 TN-DS	CBN 2028	Type B	9.525	3.970	0.40	2.82	6128 3,500	•
7713	62,040	CNGW 060204 TN-DS	CBN 1023	Type B	6.350	2.380	0.40	2.43	6128 2,501	•
7713	93,040	CNGW 09T304 TN-DS	CBN 1023	Type B	9.525	3.970	0.40	2.82	6128 3,500	•
7714	62,040	CNGW 060204 TN-DS	CBN 2028	Type B	6.350	2.380	0.40	2.43	6128 2,501	•
7714	93,040	CNGW 09T304 TN-DS	CBN 2028	Type B	9.525	3.970	0.40	2.82	6128 3,500	•

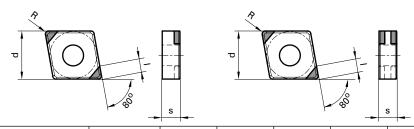

82

ISO indexable inserts, CBN-tipped, form D, with screw clamping

	ler no. = no. + code no.	ISO code	Tool material	Cutting edge geometry	d mm	s mm	R mm	l mm		Availability
7691	72,020	DCGW 070202 TN-DS	CBN 1023	Type B	6.350	2.380	0.20	2.90	6128 2,501	•
7691	72,040	DCGW 070204 TN-DS	CBN 1023	Type B	6.350	2.380	0.40	2.90	6128 2,501	
7691	113,040	DCGW 11T304 TN-DS	CBN 1023	Type B	9.525	3.970	0.40	3.00	6128 3,500	
7691	113,080	DCGW 11T308 TN-DS	CBN 1023	Type B	9.525	3.970	0.80	2.50	6128 3,500	
7692	72,020	DCGW 070202 TN-DS	CBN 2028	Type B	6.350	2.380	0.20	2.90	6128 2,501	
7692	72,040	DCGW 070204 TN-DS	CBN 2028	Type B	6.350	2.380	0.40	2.90	6128 2,501	
7692	113,040	DCGW 11T304 TN-DS	CBN 2028	Type B	9.525	3.970	0.40	3.00	6128 3,500	
7692	113,080	DCGW 11T308 TN-DS	CBN 2028	Type B	9.525	3.970	0.80	2.50	6128 3,500	

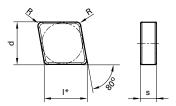
ISO indexable inserts, CBN-tipped, form V, with screw clamping

	der no. = no. + code no.	ISO code	Tool material	Cutting edge geometry	d mm	s mm	R mm	l mm		Availability
7717	164,040	VBMW 160404 TN-DSWiper	CBN 1023	Type D	9.525	4.760	0.40	4.00	6128 3,500	•
7718	164,040	VBMW 160404 TN-DSWiper	CBN 2028	Type D	9.525	4.760	0.40	4.00	6128 3,500	
7719	164,080	VBMW 160408 TN-DS	CBN 1023	Type D	9.525	4.760	0.80	3.30	6128 3,500	•
7719	164,120	VBMW 160412 TN-DS	CBN 1023	Type D	9.525	4.760	1.20	2.40	6128 3,500	•
7720	164,080	VBMW 160408 TN-DS	CBN 1023	Type G	9.525	4.760	0.80	3.30	6128 3,500	
7720	164,120	VBMW 160412 TN-DS	CBN 1023	Type G	9.525	4.760	1.20	2.40	6128 3,500	•
7721	164,080	VBMW 160408 TN-DS	CBN 2028	Type D	9.525	4.760	0.80	3.30	6128 3,500	
7721	164,120	VBMW 160412 TN-DS	CBN 2028	Type D	9.525	4.760	1.20	2.40	6128 3,500	
7722	164,080	VBMW 160408 TN-DS	CBN 2028	Type G	9.525	4.760	0.80	2.40	6128 3,500	
7722	164,120	VBMW 160412 TN-DS	CBN 2028	Type G	9.525	4.760	1.20	2.40	6128 3,500	•


Clamping screws for ISO indexable inserts

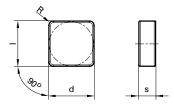
	no. = . + code no.	Screw	Torx	Tightening torque max. in Ncm	Availability
6128	2,200	M 2.2 x 5.0	Т6	101	•
6128	2,500	M 2.5 x 5.3	T7	128	
6128	2,501	M 2.5 x 6.5	T7	128	
6128	2,502	M 2.5 x 5.7	T7	128	•
6128	3,500	M 3.5 x 10.0	T15	345	
6128	3,501	M 3.5 x 12.0	T15	345	•
6128	3,502	M 3.5 x 8.5	T15	345	
6128	3,503	M 3.5 x 8.0	T15	345	
6128	4,000	M 4.0 x 13.5	T15	515	
6128	4,001	M 4.0 x 8.4	T15	515	•
6128	4,002	M 4.0 x 10.8	T15	515	
6128	4,003	M 4.0 x 0.5 x 11.0	T15	515	
6128	4,004	M 4.0 x 9.5	T20	515	
6128	4,005	M 4.0 x 0.5 x 9.0	T15	515	
6128	4,500	M 4.5 x 11.0	T15	760	
6128	4,501	M 4.5 x 7.5	T15	760	•
6128	4,502	M 4.5 x 11.0	T20	760	
6128	5,000 M 5.0 x 17.0		T20	1020	
6128	5,001	M 5.0 x 11.0	T20	1020	

Tightening torque is for screws of strength grade 12.9 and results from a 90% yield point utilisation and is based on a mean friction value of 0.14μ .

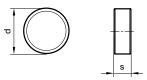

ISO indexable inserts, CBN-tipped, form C, with hole clamping, with solid carbide body

	r no. = o. + code no.	ISO code	Tool material	Cutting edge geometry	d mm	s mm	R mm	l mm	Availability
7685	124,080	CNMA 120408 TN-DS	CBN 1023	Type B	12.70	4.760	0.80	3.33	•
7685	124,120	CNMA 120412 TN-DS	CBN 1023	Type B	12.70	4.760	1.20	3.25	
7686	124,080	CNMA 120408 TN-DS	CBN 2028	Type B	12.70	4.760	0.80	3.33	
7686	124,120	CNMA 120412 TN-DS	CBN 2028	Type B	12.70	4.760	1.20	3.25	
7687	124,080	CNMA 120408 TN-LS	CBN 1023	Type B	12.70	4.760	0.80	3.33	
7687	124,120	CNMA 120412 TN-LS	CBN 1023	Type B	12.70	4.760	1.20	3.25	
7688	124,080	CNMA 120408 TN-LS	CBN 2028	Type B	12.70	4.760	0.80	3.33	
7688	124,120	CNMA 120412 TN-LS	CBN 2028	Type B	12.70	4.760	1.20	3.25	•

84 **GUHRING**

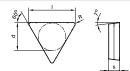

ISO indexable inserts, solid CBN, form C

* I: theoretical cutting point

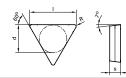

	er no. = o. + code no.	ISO code	Tool material	Cutting edge geometry	d mm	s mm	R mm	I* mm	Availability
7689	94,080	CNGN 090408 TN-S	CBN 3018	Type B	9.525	4.760	0.80	9.67	•
7689	94,120	CNGN 090412 TN-S	CBN 3018	Type B	9.525	4.760	1.20	9.67	
7689	124,120	CNGN 120412 TN-S	CBN 3018	Type B	12.70	4.760	1.20	12.90	
7689	124,160	CNGN 120416 TN-S	CBN 3018	Type B	12.70	4.760	1.60	12.90	•

ISO indexable inserts, solid CBN, form S

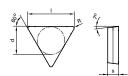
	r no. = o. + code no.	ISO code	Tool material	Cutting edge geometry	d mm	s mm	R mm	l mm	Availability
7690	94,080	SNGN 090408 TN-S	CBN 3018	Type B	9.525	4.760	0.80	9.525	
7690	94,120	SNGN 090412 TN-S	CBN 3018	Type B	9.525	4.760	1.20	9.525	
7690	124,120	SNGN 120412 TN-S	CBN 3018	Type B	12.70	4.760	1.20	12.70	
7690	124,160	SNGN 120416 TN-S	CBN 3018	Type B	12.70	4.760	1.60	12.70	•


ISO indexable inserts, solid CBN, form R

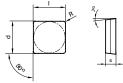
	der no. = no. + code no.	ISO code	Tool material	Cutting edge geometry	d mm	s mm	R mm	l mm	Availability
7715	124,000	RNGN 120400 TN-S	CBN 3018	Type B	12.70	4.760	-	-	•


GUHRING

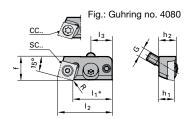
ISO full-face inserts, CBN, form T, for machining valve seats, for GP 100 system

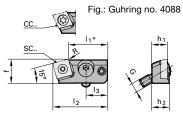

	r no. = o. + code no.	ISO code	Tool material	Surface	Cutting edge geometry	d mm	s mm	R mm	l mm	Availability
7703	61,020	TCCN 060102 FN-F	CBN 1023	bright	Type A	3.968	1.590	0.20	6.876	•
7703	61,040	TCCN 060104 FN-F	CBN 1023	bright	Type A	3.968	1.590	0.40	6.876	
7704	61,020	TCCN 060102 FN-F	CBN 2028	bright	Type A	3.968	1.590	0.20	6.876	
7704	61,040	TCCN 060104 FN-F	CBN 2028	bright	Type A	3.968	1.590	0.40	6.876	•
7678	61,020	TCCN 060102 EN-F	CBN 1023	S TiN	Type C	3.968	1.590	0.20	6.876	•
7678	61,040	TCCN 060104 EN-F	CBN 1023	S TiN	Type C	3.968	1.590	0.40	6.876	
7705	92,040	TCCN 090204 EN-F	CBN 1024	S TiN	Type C	5.556	2.380	0.40	9.525	
7706	92,040	TCCN 090204 EN-F	CBN 2026	S TiN	Type C	5.556	2.380	0.40	9.525	
7679	61,020	TCCN 060102 EN-F	CBN 2028	S TiN	Type C	3.968	1.590	0.20	6.876	
7679	61,040	TCCN 060104 EN-F	CBN 2028	S TiN	Type C	3.968	1.590	0.40	6.876	•
7679	92,040	TCCN 090204 EN-F	CBN 2028	S TiN	Type C	5.556	2.380	0.40	9.525	•
7707	61,020	TCCN 060102 SN-F	CBN 1023	S TiN	Type E	3.968	1.590	0.20	6.876	
7707	61,040	TCCN 060104 SN-F	CBN 1023	S TiN	Type E	3.968	1.590	0.40	6.876	•
7708	61,020	TCCN 060102 SN-F	CBN 2028	S TiN	Type E	3.968	1.590	0.20	6.876	
7708	61,040	TCCN 060104 SN-F	CBN 2028	S TiN	Type E	3.968	1.590	0.40	6.876	
7680	61,020	TCCN 060102 SN-F	CBN 1023	S TiN	Type I	3.968	1.590	0.20	6.876	•
7680	61,040	TCCN 060104 SN-F	CBN 1023	S TiN	Type I	3.968	1.590	0.40	6.876	•
7709	92,040	TCCN 090204 SN-F	CBN 1024	S TiN	Type I	5.556	2.380	0.40	9.525	
7710	92,040	TCCN 090204 SN-F	CBN 2026	S TiN	Type I	5.556	2.380	0.40	9.525	•
7681	61,020	TCCN 060102 SN-F	CBN 2028	S TiN	Type I	3.968	1.590	0.20	6.876	
7681	61,040	TCCN 060104 SN-F	CBN 2028	S TiN	Type I	3.968	1.590	0.40	6.876	
7681	92,040	TCCN 090204 SN-F	CBN 2028	S TiN	Type I	5.556	2.380	0.40	9.525	

ISO full-face inserts, PCD, form T, for machining valve seats, for GP 100 system


Order no. = Guhring no. + code no.	ISO-Code	Tool material	Surface	Cutting edge geometry	d mm	s mm	R mm	l mm	Availability
7712 61,020	TCCN 060102 FN-F	PCD	bright	Type A	3.968	1.590	0.20	6.876	
7712 61,040	TCCN 060104 FN-F	PCD	bright	Type A	3.968	1.590	0.20	6.876	

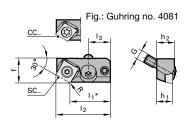
Solid carbide ISO inserts, form T, for machining valve seats, for GP 100 system

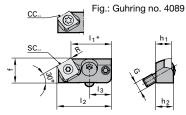

	r no. = o. + code no.	ISO-Code	Tool material	Surface	Cutting edge geometry	d mm	s mm	R mm	l mm	Availability
7711	61,020	TCCN 060102 FN-S	Solid carbide	bright	Type A	3.968	1.590	0.20	6.876	•
7711	61,040	TCCN 060104 FN-S	Solid carbide	bright	Type A	3.968	1.590	0.20	6.876	•


ISO full-face inserts, CBN, form S, for GP 100 system

G	Order auhring no.	no. = + code no.	ISO code	Tool material	Surface	Cutting edge geometry	d mm	s mm	R mm	l mm	Availability
	7716	61,020	SCGN 060102 SN-F	CBN 2028	bright	Type I	6.35	1.590	0.20	6.35	

Short clamping holders KV400

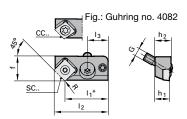


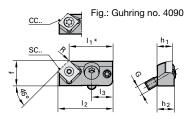


15°

* I: theoretical cutting point	* l:	112
Omin Availability	Dmin	?
1.0	31.0	.2
1.0	41.0	1.4

Order Guhring no	no. = . + code no.	Size	f mm	for indexable insert	l1* mm	l2 mm	I3 mm	G mm	h1 mm	h2 mm	R	Dmin	Availability
4080	6,000	06	9.5	CC0602	18.0	24.04	9.85	M3.5	6.3	7.3	0.2	31.0	
4080	9,000	09	14.0	SC09T3	23.0	31.83	12.5	M5	9.0	10.0	0.4	41.0	
4080	12,000	12	19.0	SC1204	30.0	41.89	16.1	M6	10.5	11.5	0.4	49.0	
4088	6,000	06	9.5	CC0602	18.0	24.04	9.85	M3.5	6.3	7.3	0.2	31.0	
4088	9,000	09	14.0	SC09T3	23.0	31.83	12.5	M5	9.0	10.0	0.4	41.0	
4088	12,000	12	19.0	SC1204	30.0	41.89	16.1	M6	10.5	11.5	0.4	49.0	





30°

* I: theoretical cutting point

	r no. = o. + code no.	Size	f mm	for indexable insert	l1* mm	l2 mm	I3 mm	G mm	h1 mm	h2 mm	R	Dmin	Availability
4081	6,000	06	9.5	CC0602	18.0	23.43	9.85	M3.5	6.3	7.3	0.2	26.0	
4081	9,000	09	14.0	SC09T3	23.0	30.96	12.5	M5	9.0	10.0	0.4	36.0	
4081	12,000	12	19.0	SC1204	30.0	40.71	16.1	M6	10.5	11.5	0.4	42.0	
4089	6,000	06	9.5	CC0602	18.0	23.43	9.85	M3.5	6.3	7.3	0.2	26.0	
4089	9,000	09	14.0	SC09T3	23.0	30.96	12.5	M5	9.0	10.0	0.4	36.0	
4089	12,000	12	19.0	SC1204	30.0	40.71	16.1	M6	10.5	11.5	0.4	42.0	

45°

* I: theoretical cutting point

		r no. = . + code no.	Size	f mm	for indexable insert	l1* mm	I2 mm	I3 mm	G mm	h1 mm	h2 mm	R	Dmin	Availability
Ī	4082	6,000	06	9.5	CC0602	19.5	23.97	9.85	M3.5	6.3	7.3	0.2	26.0	•
	4082	9,000	09	15.0	SC09T3	26.0	32.57	12.5	M5	9.0	10.0	0.4	36.0	
	4082	12,000	12	20.0	SC1204	34.0	42.81	16.1	M6	10.5	11.5	0.4	42.0	
	4090	6,000	06	9.5	CC0602	19.5	23.97	9.85	M3.5	6.3	7.3	0.2	26.0	
	4090	9,000	09	15.0	SC09T3	26.0	32.57	12.5	M5	9.0	10.0	0.4	36.0	
	4090	12,000	12	20.0	SC1204	34.0	42.81	16.1	M6	10.5	11.5	0.4	42.0	•

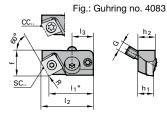


Fig.: Guhring no. 4091

60°

* I: theoretical cutting point

Order Guhring no	no. = . + code no.	Size	f mm	for indexable insert	l1* mm	l2 mm	l3 mm	G mm	h1 mm	h2 mm	R	Dmin	Availability
4083	6,000	06	9.5	CC0602	19.5	22.72	9.85	M3.5	6.3	7.3	0.2	26.0	
4083	9,000	09	15.0	SC09T3	26.0	30.76	12.5	M5	9.0	10.0	0.4	36.0	
4083	12,000	12	20.0	SC1204	34.0	40.35	16.1	M6	10.5	11.5	0.4	42.0	
4091	6,000	06	9.5	CC0602	19.5	22.72	9.85	M3.5	6.3	7.3	0.2	26.0	
4091	9,000	09	15.0	SC09T3	26.0	30.76	12.5	M5	9.0	10.0	0.4	36.0	
4091	12,000	12	20.0	SC1204	34.0	40.35	16.1	M6	10.5	11.5	0.4	42.0	

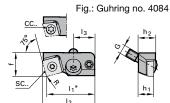


Fig.: Guhring no. 4092

theoretical cutting point

75°								12' h2					* I: theoretical cutting point		
Order Guhring no.	no. = . + code no.	Size	f mm	for indexable insert	l1* mm	I2 mm	I3 mm	G mm	h1 mm	h2 mm	R	Dmin	Availability		
4084	6,000	06	9.5	CC0602 R/N	20.0	21.76	9.85	M3.5	6.3	7.3	0.2	31.0	•		
4084	9,000	09	14.0	SC09T3 L/N	28.0	30.66	12.5	M5	9.0	10.0	0.4	41.0			
4084	12,000	12	19.0	SC1204 L/N	36.0	39.48	16.1	M6	10.5	11.5	0.4	49.0			
4092	6,000	06	9.5	CC0602 L/N	20.0	21.76	9.85	M3.5	6.3	7.3	0.2	31.0	•		
4092	9,000	09	14.0	SC09T3 R/N	28.0	30.66	12.5	M5	9.0	10.0	0.4	41.0			
4092	12 000	12	19.0	SC 1204 R/N	36.0	39 48	16.1	M6	10.5	11.5	0.4	49 N	•		

Fig.: Guhring no. 4085

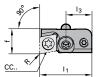
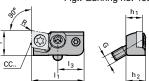
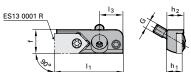
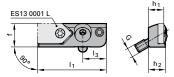



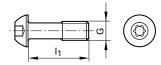
Fig.: Guhring no. 4093

90°

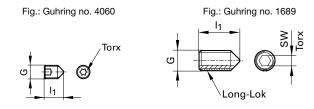
	r no. = o. + code no.	Size	f mm	for indexable insert	l1 mm	l2 mm	l3 mm	G mm	h1 mm	h2 mm	R	Dmin	Availability
4085	6,000	06	9.5	CC0602 L/N	20.0	-	9.85	M3.5	6.3	7.3	0.2	26.0	•
4085	9,000	09	14.0	CC09T3 L/N	28.0	-	12.5	M5	9.0	10.0	0.4	36.0	
4085	12,000	12	19.0	CC1204 L/N	36.0	-	16.1	M6	10.5	11.5	0.4	42.0	
4093	6,000	06	9.5	CC0602 R/N	20.0	-	9.85	M3.5	6.3	7.3	0.2	26.0	•
4093	9,000	09	14.0	CC09T3 R/N	28.0	-	12.5	M5	9.0	10.0	0.4	36.0	
4093	12,000	12	19.0	CC1204 R/N	36.0	_	16.1	M6	10.5	11.5	0.4	42.0	

Fig.: Guhring no. 4086

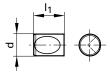




Fig.: Guhring no. 4094

for special insert blanks


	Order Guhring no.	no. = + code no.	Size	f mm	for indexable insert	l1 mm	I2 mm	I3 mm	G mm	h1 mm	h2 mm	R	Dmin	Availability
ĺ	4086	13,000	13	16.0	ES13 0001 N	47.0	-	16.1	M6	10.5	11.5	-	42.0	•
	4094	13,000	13	16.0	ES13 0001 N	47.0	-	16.1	M6	10.5	11.5	-	42.0	

Clamping screws for short clamping holders KV 400


	r no. = o. + code no.	Size	G	l ₁ mm	Torx	Tightening torque max. in Ncm	Availability
4059	3,501	06	M3.5	10.0	T 15	345	•
4059	5,001	09	M 5	14.7	T 20	900	
4059	6,001	12	M 6	17.5	T 25	1300	•

Threaded pins for short clamping holders KV 400

	r no. = . + code no.	Size	G	I ₁ mm	Torx	Availability
4060	3,501	06	M3.5x0.35	5	T 7	
1689	5,003	09	M 5	6.0	T 15	
1689	6,001	12	M6	8.0	SW 3	

Adjustment screws for short clamping holders KV 400

	r no. = o. + code no.	Size	d mm	I ₁ mm	Availability
4058	3,502	06	3.5	6.2	
4058	5,002	09	5.0	7.0	
4058	6,002	12	6.0	8.7	

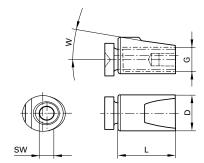
Threaded key adjustment unit for direct installation of inserts

The threaded key adjustment enables the realisation of close stepped tools for finishing operations. A particular advantage is the simple adjustment the adjustment direction. possibility of the indexable inserts for the adjustment range 0.30 mm in diameter with every design. Depending on the an axial as well as a radial adjustment, triangular, rhombic or square.

herewith adjusting the overall length as well as the diameter. Per right hand turn, the fine adjustment forces the insert into

Due to the small dimensions it is possible to produce tools from diameter 16.0 mm with insert size 06 (see table). Different insert position it is possible to carry out basic insert forms can be applied, i.e.


No of odges		from tool Ø	
No. of edges	index. insert 06	index. insert 09	index. insert 12
1	Ø 16 mm	Ø 29 mm	Ø 36 mm
2	Ø 23 mm	Ø 33 mm	Ø 44 mm
3	Ø 30 mm	Ø 44 mm	Ø 60 mm

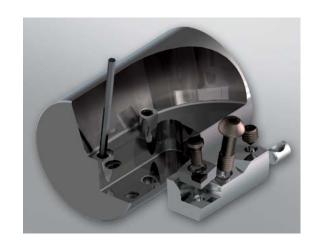

Easy: The installation and fine adjustment...

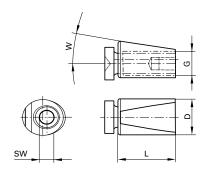
...of a single fluted tool with indexable inserts...

...via threaded key.

	r no. = . + code no.	Size	for indexable inserts	D mm	G	L mm	W	SW	Availability
4007	4,501	06	CC06 / SC06	4.5	М 3	5.5	7	1.5	
4007	4,502	06	CP06 / SP06	4.5	М 3	5.5	11	1.5	
4007	6,001	09	CC09T3 / SC09T3 / TC1102	6.0	M4x0.5	9.3	7	2.0	
4007	6,002	09	CP09T3 / SP09T3 / TP1102	6.0	M4x0.5	9.3	11	2.0	
4007	9,001	12	CC1204 / SC1204 / TC16T3	9.0	M6x0.5	12.7	7	3.0	
4007	9,002	12	CP1204 / SP1204 / TP16T3	9.0	M6x0.5	12.7	11	3.0	
4007	6,003	09	TC0902	6.0	M4x0.5	7.7	7	2.0	
4007	6,004	09	TP0902	6.0	M4x0.5	5.8	11	2.0	•

Threaded key adjustment unit for KV 400 short clamping holders


The combination of threaded key adjustment and cartridge solution offers the complete fine adjustment for diameter, length and tapering. Under ideal The resulting minimum machining dia-meapplication conditions, stepped precision ters can be taken from the following table. holes with quality IT7 can be produced with the direct as well as the cartridge


several installation system, applying inserts in one machining cycle.

			D min f	for short clampir	ng holders Guhri	ng no.	
Short clamp-	No. of edges	4080	4081	4082	4083	4084	4085
ing holder		4088	4089	4090	4091	4092	4093
size		15°	30°	45°	60°	75°	90°
06	1	31	26	26	26	31	26
	2	31	29	29	29	31	29
	3	36	36	36	36	36	36
09	1	41	36	36	36	41	36
	2	41	41	42	42	41	41
	3	51	51	53	53	51	51
12	1	49	42	42	42	49	42
	2	55	55	57	57	55	55
	3	71	71	73	73	71	71

Cartridge type installation: The fine adjustment is located outside the cartridge with threaded key adjustment.

G	Order no. = Guhring no. + code no		Size	for short clamping holder KV 400	D mm	G	L mm	W °	SW	Availability
	4007	4,500	06	Size 06	4.5	М 3	5.5	11	1.5	•
	4007	6,000	09	Size 09	6.0	M4x0.5	9.3	11	2.0	
	4007	9,000	12	Size 12	9.0	M6x0.5	12.7	11	3.0	

Indexable insert description to DIN ISO 1832:2005-11

	Inse forr		Clea	rance igle
De- scrip- tion	Angle	Form	De- scrip- tion	Angle
Α	85°		А	3°
В	82°			
С	80°		В	5°
D	55°		С	7°
E	75°			,
Н	120°		D	15°
К	55°			
L	90°		Е	20°
М	86°		F	25°
0	135°			
Р	108°		G	30°
R			N	0°
S	90°		.,	
Т	60°		Р	11°
V	35°			
W	80°		0	others
	C			

Tolerance							
m	d	d s					
Tolerance relation to inso	class in	Limit dimensions d ± m ± s =					
relation to insc	Tibea circle	mm	mm	mm			
A	-	0.025	0.005	0.025			
С	-	0.025	0.013	0.025			
E	-	0.025	0.025	0.025			
F	-	0.013	0.005	0.025			
G	-	0.025	0.025	0.130			
н	-	0.013	0.013	0.025			
J	4.76 -9.25 12.7 15.875-19.05 25.4	0.050 0.080 0.100 0.130	0.005	0.025			
К	4.76 -9.25 12.7 15.875-19.05 25.4	0.050 0.080 0.100 0.130	0.013	0.025			
L	4.76 -9.25 12.7 15.875-19.05 25.4	0.050 0.080 0.100 0.130	0.025	0.025			
M (not form D+V see exceptions)	4.76 -9.25 12.7 15.875-19.05 25.4	0.050 0.080 0.100 0.130	0.080 0.130 0.150 0.180	0.130			
N (not form D+V see exceptions)	4.76 -9.25 12.7 15.875-19.05 25.4	0.050 0.080 0.100 0.130	0.080 0.130 0.150 0.180	0.025			
U	4.76 -9.25 12.7 15.875-19.05 25.4	0.080 0.130 0.180 0.250	0.130 0.200 0.270 0.380	0.130			
х		Sp	ecial des	ign			
	G						

De- scrip- tion	Form	Size	Form	С	D	E	Н	M	0	
А		03	I/C edge I. x)				6.350 3.666		7.940 3.288	
В	70° - 90°	04	I/C edge I. x)	4.760 4.833	3.970 4.853	4.760 4.928	7.940 4.583	4.760 4.772	9.525 3.945	
С	70° - 90°	05	I/C edge I. x)	5.560 5.646	4.760 5.811	5.560 5.756	9.525 5.499	5.560 5.574	12.700 5.261	
F		06	I/C edge I. x)	6.350 6.448	5.560 6.788	6.350 6.574		6.350 6.366	15.875 6.576	
G		07	I/C edge I. x)		6.350 7.752		12.700 7.332	7.940 7.957	19.050 7.891	
н	70° - 90°	08	I/C edge I. x)	7.940 8.060		7.940 8.218				
J	70° - 90°	09	I/C edge I. x)	9.525 9.672	7.940 9.691	9.525 9.861	15.875 9.165	9.525 9.548		
М		10	I/C edge I. x)						25.400 10.521	
N		11	I/C edge I. x)		9.525 11.628		19.050 10.999			
Q	40° - 60°	12	I/C edge I. x)	12.700 12.896				12.700 12.731		
R		13	I/C edge I. x)			12.700 13.148			31.75 13.151	
Т	40° - 60°	15	I/C edge I. x)		12.700 15.504			15.875 15.914		
U	40° - 60°	16	I/C edge I. x)	15.875 16.120		15.875 16.435				
w	40° - 60°	17	I/C edge I. x)							
х	Special design	19	I/C edge I. x)	19.050 19.826	15.875 19.380	19.050 19.722		19.050 19.097		
	W							(9	

Insert size / I/C diameter /

Exce	ptions

M+N form D	4.76 -9.25 12.7 15.875-19.05 25.4	0.050 0.080 0.100	0.110	as above
M+N form V	6.35 7.94 9.525	0.050	0.160	as above

Insert type

x) mathematical, theoretical value for a corner radius of 0.00 mm see also DIN 4988

Hole diameter/countersink diameter									
Diameter	tersink (40° - 6	ert with coun- 60°) to DIN/ISO type Q, T, W	Indexable insert with cylind- rical hole to DIN 4988 insert type A, G, M						
Inner Circle	d1	d2	d1						
4.760	2.150	2.700	-						
5.560	2.500	3.300	-						
6.000	2.800	3.750	-						
6.350	2.800	3.750	2.260						
7.940	3.400	4.500	-						
8.000	3.400	4.500	-						
9.525	4.400	6.000	3.810						
10.000	4.400	6.000	-						
12.000	4.400	6.000	-						
12.700	5.500	7.500	5.160						
15.875	5.500	7.500	6.350						
16.000	5.500	7.500	-						
19.050	6.500	9.000	7.940						
20.000	6.500	9.000	-						
25.000	8.600	12.000	-						
25.400	8.600	12.000	9.120						

edge length					Inse thickr		Cutting	edge corner		Cuttin corner	g edge design	Cutting	direction	_	Fitting form	
					σ ‡ σ †					Q						
P R	S	T	V	w	Descrip- tion	s mm	Descrip- tion	Radius mm		escrip- tion	Form	Descrip- tion	Form		Corner fitting (choice) S = short cutting ed	ge
				5.560 2.716	01	1.59	00	sharp point / indication for round insert						AS	1 corner on one side e.g. C insert (1 cutting edge)	
6.350 4.614	4.760 4.760			6.350 4.344	T1	1.98		inch	-	F	sharp			BS	2 corners on one side e.g. V insert (2 cutting edges)	
7.940 5.765	5.560 5.560			7.938 5.430		1.90	MO	Indication for round insert	_			R		cs	3 corners on one side e.g. T insert (3 cutting edges)	
9.525 6.920 6.350 6.00*)	6.350 6.350	3.970 6.876	3.970 6.921	9.525 6.515	02	2.38		metric		E	-		right-hand	DS	4 corners on one side e.g. S insert (4 cutting edges)	
7.940	7.938 7.938				03	3.18	02	0.2			rounded			KS	1 corner on two sides e.g. C insert (2 cutting edges)	
8.00*)		4.760 8.245	4.760 8.299	12.700 8.687										LS	2 corners on two sides e.g. D insert (4 cutting edges)	
12.700 9.227 9.525	9.525 9.525	5.560 9.630	5.560 9.694		Т3	3.97	04	0.4		Т	chamfer- red			MS	3 corners on two sides e.g. T insert (6 cutting edges)	
10.00*)				15.875 10.859	04	4.76						L		NS	4 corners on two sides e.g. S insert (8 cutting edges)	
15.875 11.534		6.350 10.999	6.350 11.071		05	5.56	08	0.8		s			left-hand			
12.700 12.00*)	12.700 12.700										chamfer- red + rounded				Shank fitting (choice) L = long cutting edg	ge
19.050 13.841		7.938 13.749	7.938 13.839	19.050 13.031	06	6.35	12	1.2						AL	One cutting edge along the entire length	
15.875	15.875 15.875				07	7.94			_	K	double chamfer-					
16.00*)		9.525 16.498	9.525 16.606		09	9.52	16	1.6	-		red	N			Entire surface	
				25.400 17.375						Р	<u></u>		neutral	s	Solid	
19.050	19.050 19.050				12	12.7	20	2.0			double chamfer- red + rounded			F	Full-face	\
		,		,	T;	3		04		I	F		R	-	AS	

*) = Size to ISO 1832:2005-11 table A.2. Round cutting inserts "metric" design. Distinction see column cutting edge corner (M0 = metric, 00 = inch)

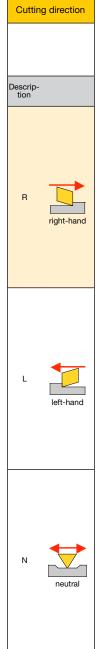
	Kr		nar mfer
angle main e edge	ting Kr of cutting in feed ction	ang pla	rance le of anar mfer
A D E	45° 60° 75°	A B C	3° 5° 7°
F	85°	D	15°
Р	90°	Е	20°
Z	*	F	25°
		G	30°
		N	0°
		P	11°
		Z	*

*Special design

Note:
Overview is for information only.
No liability is accepted for the correctness of the contents.
Is not subject to modification.
Definitive data can be found in the respective standards.

Indexable insert decription to ANSI (inch dimensions)

	Insert form		Clearar	ce angle		Tole	erance			Insert ty	pe pe								ı	nsert siz
					m T	d	d	s												
Descrip- tion	Angle	Form	Descrip- tion	Angle	Tolerance class	Lim B±	it dim. (incl	n/mm) T±	Descrition	ip-	Form		Size	inch	IC n m	m	С	D	E	H
А	85°		А	3°	А	0.0002" 0.005	0.0010" 0.025	0.0010" 0.025	А				1.25	5/32	:" 3.9)69 4	4.030	4.845	4.109	2.292
В	82°				В	0.0002" 0.005	0.0010" 0.025	0.0050" 0.125	В	70	0° - 90°									
С	80°		В	5°	С	0.0005" 0.013	0.0010" 0.025	0.0010" 0.025	С	7(0° - 90°		1.5	3/16	" 4.7	763 4	4.836	5.815	4.931	2.750
D	55°		С	7°	D	0.0005" 0.013	0.0010" 0.025	0.0050" 0.125	F				1.75	7/32	5.5	556	5.642	6.783	5.752	3.208
Е	75°				E	0.0010" 0.025	0.0010" 0.025	0.0010" 0.025	G				2	1/4	· 6.3	250 4	6.448	7.752	6.574	3.666
Н	120°		D	15°	F	0.0002" 0.005	0.0005" 0.013	0.0010" 0.025	н		Y	_		1/4	0.3	550 (0.446	1.152	6.574	3.000
К	55°				G	0.0010" 0.025	0.0010" 0.025	0.0050" 0.125	J)° - 90°	_	2.5	5/16	7.9	38 8	3.060	9.691	8.218	4.583
L	90°		E	20°	Н	0.0005" 0.013	0.0005" 0.013	0.0010" 0.025	М	70)° - 90°	-	3	3/8	4 9.5	525 9	9.672	11.628	9.861	5.499
М	86°		F	25°	J	0.0002"	*	0.0010"	N			_								
0	135°				K	0.005	*	0.025	Q		X	-	4	1/2	12.7	700 1	2.896	15.504	13.148	7.332
Р	108°		G	30°		0.025	*	0.025		40	0° - 60°	-	5	5/8'	' 15.8	875 1	6.120	19.380	16.435	5 9.165
R			N	0°	L	0.025		0.025	R											
S	90°				М	*	*	0.125	Т	40	0° - 60°	$\left. \left \right \right $	6	3/4	19.0	050 1	9.826	23.256	19.722	10.999
Т	60°		Р	11°	N	*	*	0.0010" 0.025	U	41	0° - 60°		8	1"	25.4	400 2	4.878	29.909	25.364	1 14.145
V	35°				U	*/	*	0.0050" 0.125	W	40	0° - 60°	-								
W	80°		0	other	х	S	Special des	ign	х	5	Special design		10	1 1/4	1" 31.7	750 3	2.240	38.760	32.870	18.331
	C			C		(G			W	,									
													dge len		nm					
					Insert f	form	Clear angle	Tolerance	3/16"	ztended 7/32"	1/4"	speci 5/1		s * 3/8"	1/2"	5/8"	3/	/4"	1"	1/ "
								J, K, L, M, N	0.002" 0.051	0.002" 0.051	0.002" 0.051	0.00		002" .051	0.003" 0.076	0.004				0.006" 0.152
					C, E, H,	м, о.	Α	U	0.003" 0.076	0.003" 0.076	0.003" 0.076	0.00	03" 0.	-	0.005" 0.127	0.007 0.178	" 0.0	07" 0.	010" 0	0.010" 0.254
					P, S, T,	R, W	В	M, N	0.003" 0.076	0.003" 0.076	0.003" 0.076	0.00		003" .076	0.005" 0.127	0.006 0.152				0.008" 0.203
							ь	U	0.005" 0.127	0.005" 0.127	0.005" 0.127	0.00		005" .127	0.008" 0.203	0.011 0.279				0.015" 0.381
					D		А	J, K, L, M, N, U	0.002" 0.051	0.002" 0.051	0.002" 0.051	0.00	51 0	.051	0.003" 0.076	0.004 0.102	2 0.1	102 0	.102 (0.004" 0.102
							В	M, N, U	0.004" 0.102	0.004" 0.102	0.004" 0.102	0.00		004" .102	0.006" 0.152	0.007 0.178				0.007" 0.178


/ I/C diameter / edge length

M	0	P	R	S	\triangle	V	₩ ○
3.979	1.644	2.884	3.969	3.969	6.875	6.920	2.715
4.775	1.973	3.461	4.763	4.763	8.250	8.304	3.258
5.570	2.301	4.037	5.556	5.556	9.623	9.687	3.801
6.366	2.630	4.614	6.350	6.350	10.999	11.071	4.344
7.957	3.288	5.765	7.938	7.938	13.749	13.839	5.430
9.548	3.945	6.920	9.53	9.53	16.498	16.606	6.515
12.731	5.261	9.227	12.700	12.700	21.997	22.142	8.687
15.914	6.576	11.534	15.875	15.875	27.496	27.677	10.859
19.097	7.891	13.841	19.050	19.050	19.050	32.996	13.031
24.560	10.148	17.800	25.400	25.400	42.435	42.714	17.375
31.828	13.151	23.068	31.750	31.750	54.993	55.354	21.718
	4.775 5.570 6.366 7.957 9.548 12.731 15.914 19.097 24.560	3.979	3.979 1.644 2.884 4.775 1.973 3.461 5.570 2.301 4.037 6.366 2.630 4.614 7.957 3.288 5.765 9.548 3.945 6.920 12.731 5.261 9.227 15.914 6.576 11.534 19.097 7.891 13.841 24.560 10.148 17.800	3.979 1.644 2.884 3.969 4.775 1.973 3.461 4.763 5.570 2.301 4.037 5.556 6.366 2.630 4.614 6.350 7.957 3.288 5.765 7.938 9.548 3.945 6.920 9.53 12.731 5.261 9.227 12.700 15.914 6.576 11.534 15.875 19.097 7.891 13.841 19.050 24.560 10.148 17.800 25.400	3.979 1.644 2.884 3.969 3.969 4.775 1.973 3.461 4.763 4.763 5.570 2.301 4.037 5.556 5.556 6.366 2.630 4.614 6.350 6.350 7.957 3.288 5.765 7.938 7.938 9.548 3.945 6.920 9.53 9.53 12.731 5.261 9.227 12.700 12.700 15.914 6.576 11.534 15.875 15.875 19.097 7.891 13.841 19.050 19.050 24.560 10.148 17.800 25.400 25.400	3.979 1.644 2.884 3.969 3.969 6.875 4.775 1.973 3.461 4.763 4.763 8.250 5.570 2.301 4.037 5.556 5.556 9.623 6.366 2.630 4.614 6.350 6.350 10.999 7.957 3.288 5.765 7.938 7.938 13.749 9.548 3.945 6.920 9.53 9.53 16.498 12.731 5.261 9.227 12.700 12.700 21.997 15.914 6.576 11.534 15.875 15.875 27.496 19.097 7.891 13.841 19.050 19.050 19.050 24.560 10.148 17.800 25.400 25.400 42.435	3.979 1.644 2.884 3.969 3.969 6.875 6.920 4.775 1.973 3.461 4.763 4.763 8.250 8.304 5.570 2.301 4.037 5.556 5.556 9.623 9.687 6.366 2.630 4.614 6.350 6.350 10.999 11.071 7.957 3.288 5.765 7.938 7.938 13.749 13.839 9.548 3.945 6.920 9.53 9.53 16.498 16.606 12.731 5.261 9.227 12.700 12.700 21.997 22.142 15.914 6.576 11.534 15.875 15.875 27.496 27.677 19.097 7.891 13.841 19.050 19.050 19.050 32.996 24.560 10.148 17.800 25.400 25.400 42.435 42.714

Inse	ert thickn	ess
ω 		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Descrip- tion	s inch	s mm
1	1/16"	1.59
1.2	5/64"	1.98
1.5	3/32"	2.38
2	1/8"	3.175
2.5	5/32"	3.97
3	3/16"	4.763
3.5	7/32"	5.56
4	1/4"	6.35
5	5/16"	7.938
6	3/8"	9.53
	3	

Outin	ig cage c	OTTICI
(>
Descrip- tion	Rac	dius mm
0	0"	0
0.2	0.004"	0.102
0.5	0.008"	0.203
1	1/64"	0.397
2	1/32"	0.798
3	3/64"	1.191
4	1/16"	1.588
5	5/64"	1.984
6	3/32"	2.381
7	7/64"	2.778
8	1/8"	3.175
	1	

Cutting edge corner

R

ı	Cutt. e	edge corner lesign
	Q	
	Descrip- tion	Form
	F	sharp
j si	E	rounded
	т	chamferred
]	S	chamferred + rounded
•	К	double chamferred
	Р	double chamferred + rounded
		E

Comparison insert thickness							
Descr. ANSI	Descr. ISO	s mm					
1	01	1.59					
1.2	T1	1.98					
1.5	02	2.38					
2	03	3.18					
2.5	Т3	3.97					
3	04	4.76					
3.5	06	5.56					
4	05	6.35					
5	07	7.94					

Comparison ANSI ISO - Radius							
Descr. ANSI	Descr. ISO	Radius mm					
0	00	0					
0.5	02	0.2					
1	04	0.4					
2	08	0.8					
3	12	1.2					
4	16	1.6					
5	20	2.0					
6	24	2.4					
7	28	2.8					

Tool materials PCD and CBN

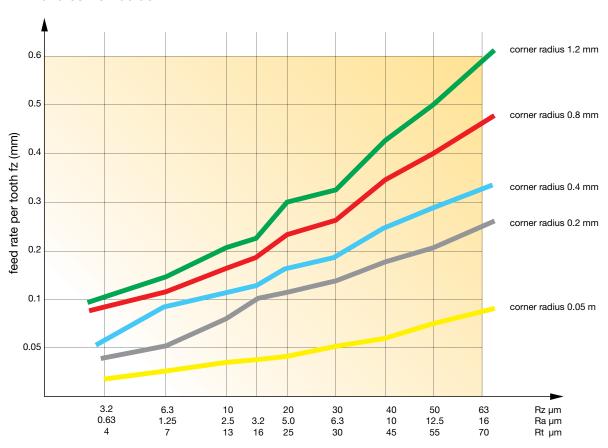
It is not only the extreme hardness of superhard tool materials but also their high heat-resistance which enables highest cutting rates and increased productivity. One disadvantage is however their low toughness.

Economical application is only possible on extremely rigid machines and for a specific range of application.

Guhring description	Classification	Range of application, characteristics	Average grain size	Diamond content
	Fine grain	Aluminium and AlSi-alloys <10%Si, magnesium alloys, brass, copper, bronze, wood composite materials, excellent cutting edge quality, high abrasion resistance, excellent surface qualities	2-4 μm	appr. 90 %
PCD	Medium grain	Guhring standard grade AlSi-alloys <14%Si, copper alloys, graphite and graphite composite materials, wood composite materials, unsintered ceramic and carbide (<15% binding metal content) excellent abrasion resistance, go	5-10 μm	appr. 92 %
PGD	Coarse grain	Roughing and finishing applications AlSi-alloys >14%Si and other abrasive machining applications, MMC, sintered ceramic and carbide (<15% binding metal content), extreme abrasion resistance, high shock resistance, long tool life with acceptable to good surface quality	25 µm	appr. 94 %
	Mixed grain	Abrasive machining applications (i.e.: >14% AlSi-alloys, MMC, composite materials) highest wear resistance, excellent shock resistance, extreme abrasion resistance with good edge roughness, long tool life with very good surface quality	2-4 μm+ 25 μm	appr. 95 %
CBN 10	Low CBN-content	CBN tool material with carbide base for finishing machining of, for example, case hardened steels, heat-treatable steels, tool steels, grey cast iron, suitable for continuous and interrupted cut applications (especially hard turning) with a chip removal <0.5mm, high pressure resistance, low thermal conductivity, excellent abrasion resistance, chemical stability, good shock toughness for high removal rates, excellent surface finish and long tool life	2 µm	50-65 % CBN- content
CBN 20	High CBN-content with carbide base	CBN tool material with carbide base for the machining of, for example, pearlitic grey cast iron (> 45 HRC), hardened steel, tool and structural profile steels, powder metallurgic Fe-sinter materials, alloys on Ni/Cr basis (nickel base alloys - "Super-alloys") thermal sprayed alloy & hard coatings on Co-, Ni- und Fe-basis, suitable for continuous and interrupted cut applications with a medium chip removal (typical 0.5 - 1.5mm) high thermal conductivity, high break toughness, high surface qualities	2 µm	80-95 % CBN- content
CBN 30	High CBN-content without carbide base	Solid CBN tool material without carbide base for rough machining of pearlitic grey cast iron, chilled cast iron (> 45 HRC), hardened steels with high break toughness, excellent wear resistance, very good chemical hardness, high specific removal rate For application in tool holders, drilling and boring tools, recessing tools as well as cutter heads with clamping element and negative rake angle geometry	15 µm	80-95 % CBN- content

Carbide application

Cutting mate- rial grade	Carbide grade	Coating	Colour	Coating structure	Coating hardness	Application range
K10	K10	uncoated	-	-	-	aluminium and cast materials
K10-S	K10	TiN	golden yellow	single-layer	2300 HV	universal
K10-O	K10	AlTiN	blue anthracite	single-layer	3400 HV	HSC machining
K10-Proton	K10	TiAIN	blue violet	multi-layer	3400 HV	cast materials
K20-A	K20	TiAIN	grey	single-layer	3200 HV	universal
P10	P10	uncoated	-	-	-	unalloyed steels
P40	P40	uncoated	-	-	-	unalloyed steels
P40-S	P40	TiN	golden yellow	single-layer	2300 HV	steel materials
P40-O	P40	AlTiN	blue anthracite	single-layer	3400 HV	steel materials
P40-Proton	P40	TiAIN	blue violet	multi-layer	3400 HV	steel and cast materials


Application recommendations for inserts

Guide values for surface finish

In order to select the right feedrate per tooth (fz) please pay also attention to the table below "Guide values for surface finish"

Wiper geometries lead in many cases to better surface finish and higher feed rates along with a constant high accuracy.

Guide values for surface finish relative to feedrate and corner radius

Surface finish

Cutting recommendations for inserts

Cutting groups	Material groups	Composition / Structure	Tensile strength RM (MPa)	Hardness HB HRC	K10 bright	K10 S	K10	K10 Proton	K20 A
1.1		C=0,1 -0,25 annealed, long chip.	420	125					120 - 180
1.2		C=0,1 -0,25 annealed, short chip.	420	125					120 - 180
2.1	unalloyed steel	C=0,25 -0,55 annealed, long chip.	620	190					120 - 180
2.2	Cast steel Machining	C=0,25 -0,55 annealed, short chip.	640	190	-	-	-	-	120 - 180
3	steel	C=0,25 -0,55 tempered	850	250					120 - 180
4		C=0,25 -0,8 annealed	915	270					120 - 180
5		C=0,25 -0,8 tempered	1020	300					120 - 180
6	Low-alloy steel	annealed	610	180					90 - 140
7	Cast steel	tempered	930	275	-	-	-	-	90 - 140
8 9	Machining steel	tempered	1020 1190	300 350					90 - 140 90 - 140
9	Lligh allow stool	tempered	1190	350					90 - 140
10	High-alloy steel Cast steel	annealed	680	200	_	_	_	_	70 - 110
11	High-alloy tool steel	hardened and tempered	1100	325					70 - 110
12 - 13	Stainless steel and cast steel	ferritic/martensitic annealed martensitic	680 810	200 240	-	-	-	-	60 - 90 60 - 90
14.1	Otainless steel	austenitic quenched	610	180		40 - 60	40 - 80	40 - 80	80 - 220
14.2	Stainless steel	austenitic/ferritic (duplex)	880	260	_	40 - 60	40 - 80	40 - 80	80 - 220
15	Grey cast iron	perlitic/ferritic		180	80 - 140	80 - 140	100 - 200	100 - 200	60 - 200
16	Grey cast iron	perlitic (martensitic)		260	80 - 140	80 - 140	100 - 200	100 - 150	60 - 200
17	Cast iron with	perlitic		160	60 - 100	80 - 120	80 - 140	80 - 140	100 - 170
18	nodular cast iron	perlitic		250	60 - 100	80 - 120	80 - 140	80 - 140	100 - 170
19	Malleable cast	ferritic		130	_	60 - 120	80 - 140	80 - 140	60 - 100
20		perlitic		230		60 - 120	80 - 140	80 - 140	60 - 100
21	Aluminium	not heat treatable		60	80 - 400	100 - 500	_	_	_
22	Forging alloys	heat treatable/ heat treated		100	80 - 400	100 - 500			
23	Aluminium	<12% Si not heat treatable		75	80 - 400	100 - 500			
24	Casting alloys	<12% Si heat treatable/ heat treated		90	80 - 400	100 - 500	-	-	-
25	Connex	>12% Si not heat treatable		130	80 - 400	100 - 500			
26 27	Copper	machined alloys, Pb>1% CuZn, CuSnZn		110	80 - 300	100 - 300			
28	Copper alloys (bronze, brass)	Cu, lead free copper/electrolyte copper		90	80 - 300 80 - 300	100 - 300	_	_	_
29	Non metallic	Duroplastic		100	80 - 300	100 - 300			
30	materials	Reinforced materials			-	-	-	-	-
31	matorialo	Fe-based annealed		200		30 - 80	30 - 90	30 - 100	40 - 100
32		heat treated		230		30 - 80	30 - 90	30 - 100	40 - 100
33	Heat resistand	Ni- or Co-based annealed		250		30 - 80	30 - 90	30 - 100	40 - 100
34	alloys	heat treated		350		30 - 80	30 - 90	30 - 100	40 - 100
35		cast		320		30 - 80	30 - 90	30 - 100	40 - 100
36		Pure titanium	400						40 - 100
37	Titanium alloys	Alpha-beta alloys	1050		-	-	-	-	40 - 100
38	Handana da ia d			50 - 62					
39	Hardened steels			50 - 62	-	_	-	-	-

t = dry machining n = wet machining

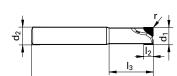
Cutting speed v _c in m/min												
	P10 bright	P10 bright	P40 S	P40	P40 Proton	CBN 1023	CBN 1024	CBN 1026	CBN 2026	CBN 2028	CBN 3018	PCD Grain middle
	80 - 120	60 - 100	100 - 140	120 - 160	100 - 160							
	80 - 120	60 - 100	100 - 140	120 - 160	100 - 160							
	80 - 120	60 - 100	100 - 140	120 - 160	90 - 150							
	80 - 120	60 - 100	100 - 140	120 - 160	100 - 160	-	-	-	-	-	-	-
	80 - 120	60 - 100	100 - 140	120 - 160	90 - 150							
	80 - 120	60 - 100	100 - 140	120 - 160	80 - 140							
	80 - 120	60 - 100	100 - 140	120 - 160	75 - 120							
			90 - 130 90 - 130	60 - 100 60 - 100	90 - 140 60 - 110							
	-	-	90 - 130	60 - 100	60 - 110	-	-	-	-	-	-	_
			90 - 130	60 - 100	60 - 110							
\dashv			30 - 130	00 - 100	00 - 110							
			60 - 100	60 - 100	60 - 110							
	-	-	60 - 100	60 - 100	50 - 90	-	-	-	-	-	-	-
1			40 - 80	40 - 80	40 - 90							
	-	-	40 - 80	40 - 80	40 - 90	-	-	-	-	-	-	-
	-	-	-	-	- -	-	-	-	-	-	-	
	-	-	-	-	-	200 - 600 200 - 600	750 - 1100 t 750 - 1100 t	-				
	-	-	-	-	80 - 130 -	-	-	-	-	-	-	-
	-	-	-	-	90 - 150 80 - 140	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	900 - 3000 900 - 3000
												600 - 2400
	-	-	-	-	-	-	-	-	-	-	-	600 - 2000
												300 - 700
												400 - 1300
	-	-	-	-	-	-	-	-	-	-	-	400 - 1300
_												400 - 1300
	-	-	-	-	-	-	-	-	-	-	-	200 - 1000
												200 - 1000
	_	_	_	_	_	_	_	_	_	_	_	_
	-	-	-	-		-	-	-	-	-	-	-
						100 - 140 t	120 - 180 t	120 - 180 t	120 - 180 n	120 - 180 n		
	_		_	_	_	110 - 240 t	180 - 280 t	180 - 280 t	180 - 230 n	180 - 280 n	_	_

Guhring no.	5492
Standard	Guhring std.
Tool material	PCD
Surface	bright
Туре	
Shank design	НА
Helix	0°
Cooling	axial
Discount group	110

d1	d2	l1	12	13	14	Z	Code no.	Availability
mm	mm	mm	mm	mm	mm			Availability
4.000	6.000	51.00	6.00	15.00	36.00	2	4.000	
5.000	6.000	51.00	8.00	15.00	36.00	2	5.000	•
6.000	6.000	57.00	8.00	21.00	36.00	2	6.000	
8.000	8.000	63.00	8.00	27.00	36.00	2	8.000	•
8.000	8.000	63.00	12.00	27.00	36.00	2	8.001	•
10.000	10.000	72.00	8.00	32.00	40.00	2	10.000	•
10.000	10.000	72.00	16.00	32.00	40.00	2	10.001	
12.000	12.000	83.00	8.00	38.00	45.00	2	12.000	
12.000	12.000	83.00	16.00	38.00	45.00	2	12.001	
14.000	14.000	83.00	8.00	38.00	45.00	2	14.000	•
14.000	14.000	83.00	16.00	38.00	45.00	2	14.001	•
16.000	16.000	100.00	12.00	52.00	48.00	2	16.000	•
16.000	16.000	100.00	20.00	52.00	48.00	2	16.001	
18.000	18.000	100.00	12.00	52.00	48.00	2	18.000	
18.000	18.000	100.00	20.00	52.00	48.00	2	18.001	
20.000	20.000	100.00	12.00	50.00	50.00	2	20.000	•
20.000	20.000	100.00	20.00	50.00	50.00	2	20.001	•

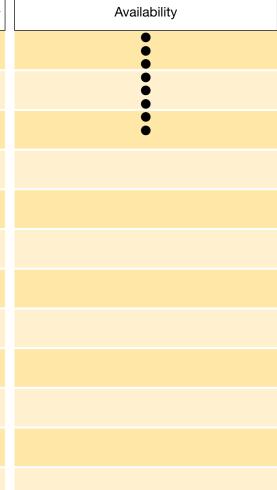
Slot drills (2-fluted)

Guhring no.	5493
Standard	Guhring std.
Tool material	PCD
Surface	bright
Туре	
Shank design	DZ
Helix	0 °
Cooling	axial
Discount group	110

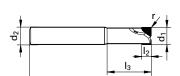


d1	d2	l1	12	13	14	Z	Code no.	Availability
mm	mm	mm	mm	mm	mm		1	Availability
4.000	6.000	70.00	6.00	15.00	55.00	2	4.000	•
5.000	6.000	70.00	8.00	15.00	55.00	2	5.000	•
6.000	6.000	75.00	8.00	21.00	54.00	2	6.000	
8.000	8.000	100.00	8.00	27.00	73.00	2	8.000	•
8.000	8.000	100.00	12.00	27.00	73.00	2	8.001	•
10.000	10.000	100.00	8.00	32.00	68.00	2	10.000	•
10.000	10.000	100.00	16.00	32.00	68.00	2	10.001	•
12.000	12.000	100.00	8.00	38.00	62.00	2	12.000	•
12.000	12.000	100.00	16.00	38.00	62.00	2	12.001	•
14.000	14.000	100.00	8.00	38.00	62.00	2	14.000	•
14.000	14.000	100.00	16.00	38.00	62.00	2	14.001	•
16.000	16.000	150.00	12.00	52.00	98.00	2	16.000	•
16.000	16.000	150.00	20.00	52.00	98.00	2	16.001	•
18.000	18.000	125.00	12.00	52.00	73.00	2	18.000	•
18.000	18.000	125.00	20.00	52.00	73.00	2	18.001	•
18.000	18.000	150.00	20.00	52.00	98.00	2	18.002	•
18.000	18.000	150.00	12.00	52.00	98.00	2	18.003	•
20.000	20.000	150.00	12.00	50.00	100.00	2	20.000	•
20.000	20.000	150.00	20.00	50.00	100.00	2	20.001	•

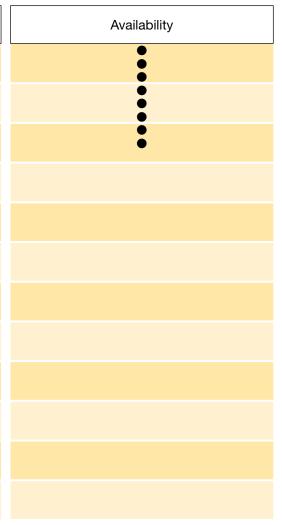
Slot drills (3-fluted)

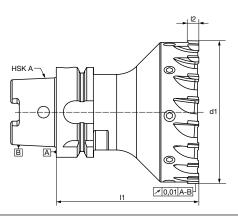

Guhring no.	5495
Standard	Guhring std.
Tool material	PCD
Surface	bright
Туре	
Shank design	НА
Helix	0°
Cooling	axial
Discount group	110

d1	d2	l1	12	13	14	Z	Code no.
mm	mm	mm	mm	mm	mm		
14.000	14.000	83.00	8.00	38.00	45.00	3	14.000
14.000	14.000	83.00	16.00	38.00	45.00	3	14.001
16.000	16.000	100.00	12.00	52.00	48.00	3	16.000
16.000	16.000	100.00	20.00	52.00	48.00	3	16.001
18.000	18.000	100.00	12.00	52.00	48.00	3	18.000
18.000	18.000	100.00	20.00	52.00	48.00	3	18.001
20.000	20.000	100.00	12.00	50.00	50.00	3	20.000
20.000	20.000	100.00	20.00	50.00	50.00	3	20.001



Slot drills (3-fluted)


Guhring no.	5496
Standard	Guhring std.
Tool material	PCD
Surface	bright
Туре	
Shank design	DZ
Helix	0 °
Cooling	axial
Discount group	110

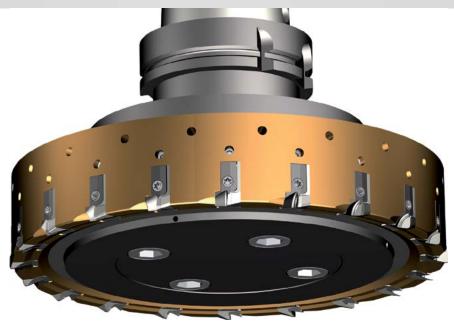


d1	d2	l1	l2	l3	14	Z	Code no.
mm	mm	mm	mm	mm	mm		
14.000	14.000	100.00	8.00	38.00	62.00	3	14.000
14.000	14.000	100.00	16.00	38.00	62.00	3	14.001
16.000	16.000	150.00	12.00	52.00	98.00	3	16.000
16.000	16.000	150.00	20.00	52.00	98.00	3	16.001
18.000	18.000	150.00	12.00	52.00	98.00	3	18.000
18.000	18.000	150.00	20.00	52.00	98.00	3	18.001
20.000	20.000	150.00	12.00	50.00	100.00	3	20.000
20.000	20.000	150.00	20.00	50.00	100.00	3	20.001

HSC face milling cutters

3016
Guhring std.
PCD-tipped
bright
PF 1000 G
right-hand
110

d1	HSK-A	11	12	Z	Code no.
mm		mm	mm		
32.000	63	100.00	8.00	8	32.000
40.000	63	100.00	8.00	10	40.000
50.000	63	100.00	8.00	12	50.000
63.000	63	100.00	8.00	14	63.000
80.000	63	100.00	8.00	16	80.000
100.000	63	100.00	8.00	18	100.000
125.000	63	100.00	8.00	22	125.000


Availability
•

A unique solution offering outstanding performance, quality and economic efficiency

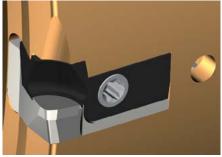
Guhring's PF 1000 face milling cutter is the ideal tool for the economic high speed machining of non-ferrous metals such as aluminium, aluminium-alloys and copper.

The face milling cutter is available in diameters from 63 to 250 mm and holds 3 to 20 PCD milling inserts, depending on diameter.

For the PF 1000 face milling cutter to satisfy the extreme demands of HSC, Guhring has developed several leading technical innovations. They include the following:

Innovative clamping screw locator

The utility patented steel ring for locating the clamping screws is shrunk into the milling body and provides the face milling cutter with exceptional rigidity allowing extremely high maximum revolutions, for example 26,875 rev./min. for a diameter of 100 mm.


Integrated threads for PCD milling inserts

The threads for locating the PCD milling inserts are integrated in the clamping wedges. Therefore, clamping threads or threaded inserts are not required in the milling body, uneven clamping through the wedging effect no longer occurs. The internal screwhead reduces the centrifugal forces and concentrates the mass near to the rotational axis.

Integrated chip deflectors

The steel chip deflectors integrated in the clamping wedge provide optimal protection for the milling body and guarantee extremely long tool life.

Utility patented wedge clamping

The positive fit of the utility patented wedge clamping guarantees a secure clamping of the PCD milling insert even at extreme speeds and therefore above average milling quality and performance.

Diagram 1: Feed rate for example f=0.1 mm/tooth

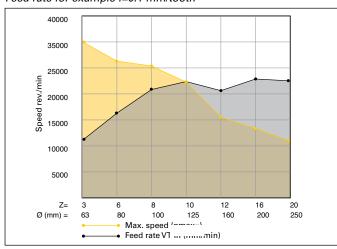
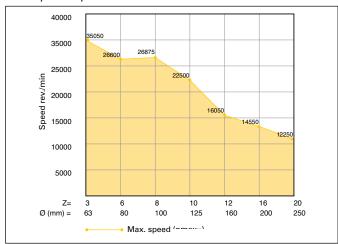
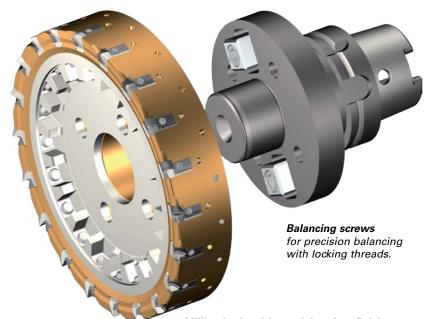



Diagram 2:
Max. speed dependent on tool diameter

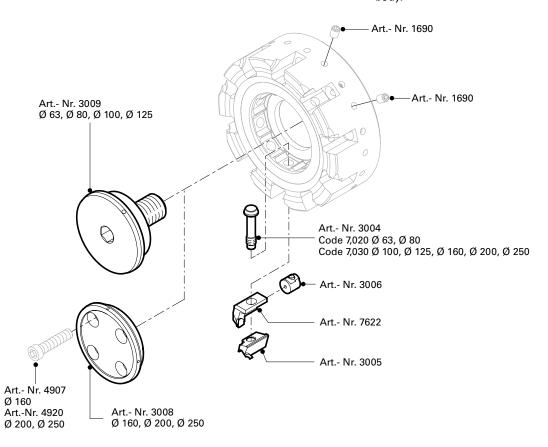
Many sophisticated individual solutions provide a unique sytem for HSC milling of non-ferrous metals such as aluminium and copper, including the following:

Utility patented, axial wedge adjustment

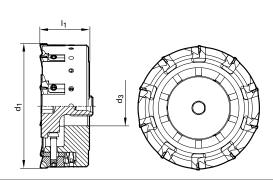
for the adjustment of the PCD milling insert of up to 1 mm via a 15° wedge, provides very accurate setting possibilities. The adjusters are precisely integrated into the milling cutter body.

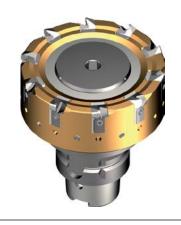

Milling arbor:

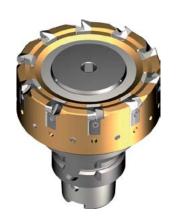
from Guhring's GM 300 range, specially optimised with an increased bearing surface for Ø 200 mm and Ø 250 mm face milling cutters.


A high-tensile aluminium clamping disc from face milling cutter diameter 160 mm ensures a perfect fit of the milling body even at highest speeds and also includes an optimised central coolant delivery for minimal quantity lubrication (MQL).

High-tensile, high-quality screws ensure secure clamping of the milling body to the milling arbor.

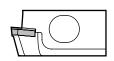

Milling body with special surface finish produced in high-tensile aluminium for reasons of reducing mass from Ø 100 mm. This reduces the forces on the machine spindle bearings for high speed machining. The utility patented, steel ring for locating the clamping screws is shrunk into the milling body.




HSC-Face milling cutters adjustable

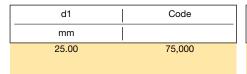
Chuck is not included!

Guhring no.	3000	3001
Standard	Guhring std.	
Tool material	PCD	CBN
Surface	bright	bright
Туре	PF 1000	PF 1000
Cutting direction	rh	rh
Discount group	114	114

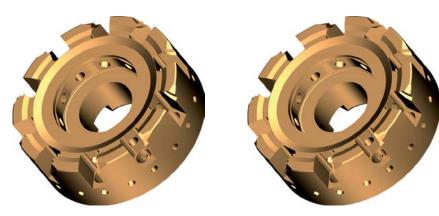

d1	d3	I1	Z	Code
mm	mm	mm		
63.000	22.000	100.00	3	63.000
80.000	27.000	100.00	6	80.000
100.000	32.000	150.00	10	100.000
125.000	40.000	150.00	10	125.000
160.000	40.000	150.00	12	160.000
200.000	60.000	150.00	16	200.000
250.000	60.000	150.00	20	250.000

Availability				
on request	on request			
on request	on request			
on request	on request			
on request	on request			
on request	on request			
on request	on request			
on request	on request			

Dimensions with a higher number of teeth (Z) are available on request.


Face milling insert

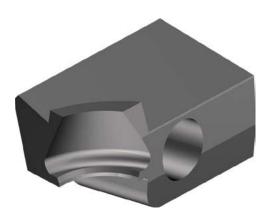
Guhring no.	7622	7623
Standard	Guhring std.	
Tool material	PCD	CBN
Surface	bright	bright
Cutting direction	rh	rh
Discount group	114	114



	Availability
•	on request

Basic holders

Guhring no.	3002	3003
Standard	Guhring std.	
Discount group	114	114

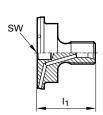


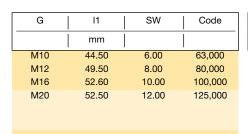
d1	d3	outer Ø	l1
mm	mm	mm	mm
63.000	22.000	61.800	43.10
80.000	27.000	78.800	48.10
100.000	32.000	98.500	48.10
125.000	40.000	123.500	48.10
160.000	40.000	158.500	61.10
200.000	60.000	198.500	61.10
250.000	60.000	248.500	61.10

	Availability
•	
•	
•	

Clamping wedge

Guhring no.	3005
Standard	Guhring std.
Discount group	114

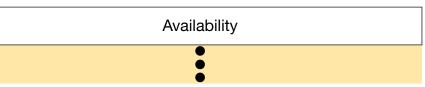



	Code
L	
	7,000

Availability •

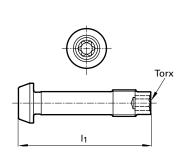
Retention screws

Guhring no.	3009
Standard	Guhring std.
Discount group	114


	Availabil	lity	
	•		

Clamping discs

Guhring no.	3008
Standard	Guhring std.
Discount group	114



Code	
160,000	
200,000	
250,000	

Adaptors

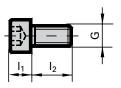
Guhring no.	3004
Standard	Guhring std.
Discount group	114

Torx	l1	Code
	mm	
T25	23.50	7,020
T25	35.00	7,030

Availability
•

Adjustment units

Guhring no.	3006
Standard	Guhring std.
Discount group	114



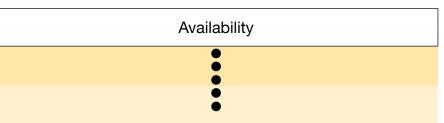
Code	
11,000	

Availability

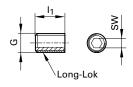
Hexagon socket clamping screws

Guhring no.	4920	4907
Standard	DIN 6912	DIN EN ISO 4762
Discount group	114	114

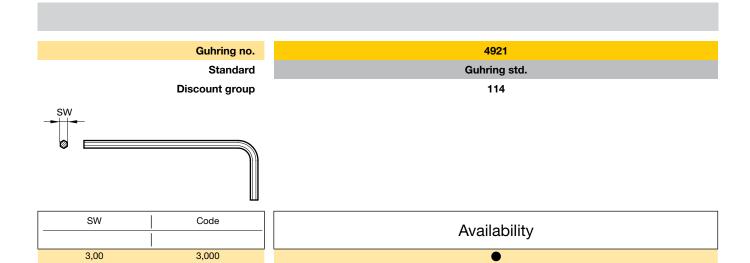
G	l1	12	SW	Code
	mm	mm		
M12	12.00	65.00	10.00	12,650
M16	10.00	70.00	14.00	16,700


Availability		
•	•	

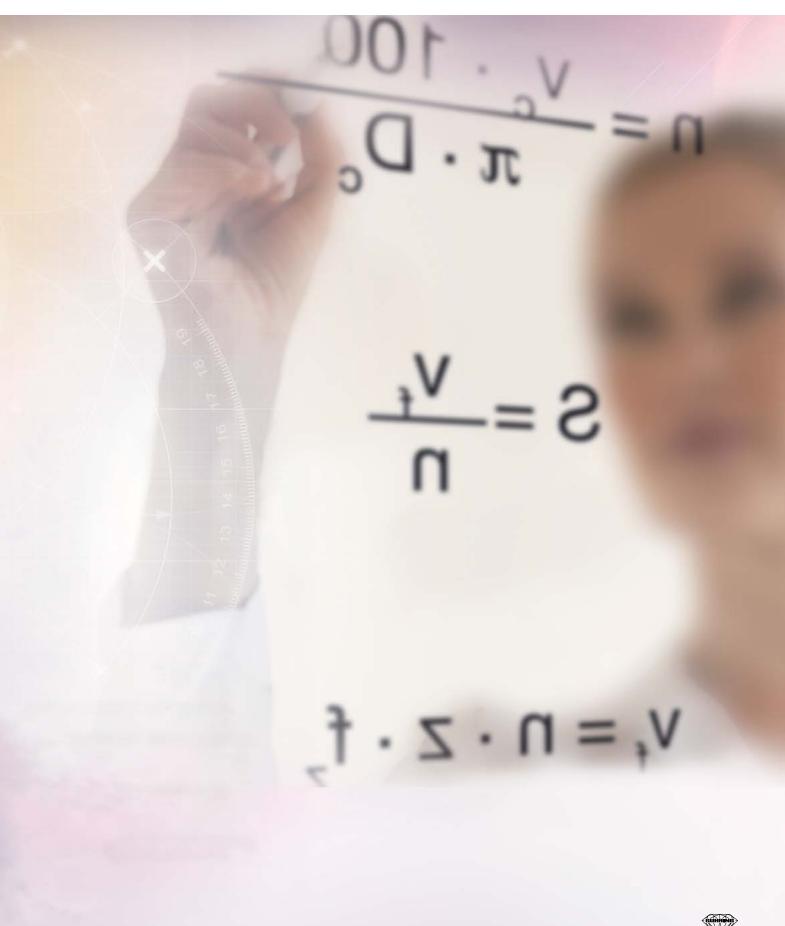
Hexagon socket sets



Drive	L	SW	Code
inch	mm		
1/2	90.00	6.00	6,038
1/2	90.00	8.00	8,048
1/2	140.00	10.00	10,060
1/2	140.00	12.00	12,000
1/2	60.00	14.00	14,000


Locking threaded pins

Guhring no.	1690
Standard	Guhring std.
Discount group	114



G	L	sw	Code	
	mm			
M6	8,00	3,00	6,001	
M6	12,00	3,00	6,002	

Availability	
•	

TECHNICAL SECTION

What is Minimum Quantity Lubrication (MQL)?

Minimal quantity lubrication (MQL) works with an air lubrication mixture (aerosol). A minimum quantity of cooling lubricant is applied directly on the effective area of the tool or workpiece. This minimies the friction heat while machining

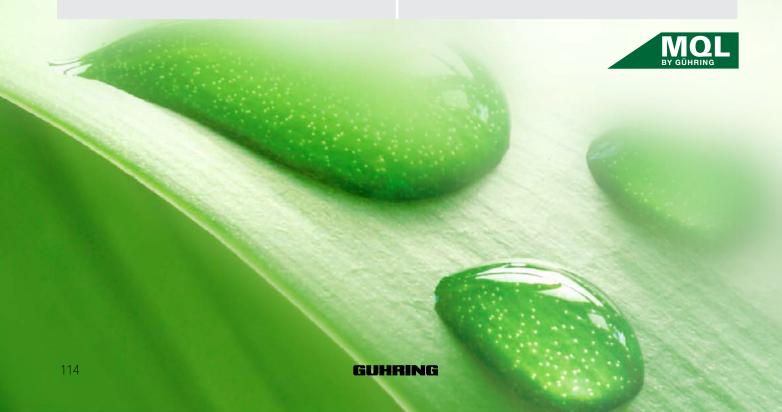
or dissipates it via the chip respectively. In comparison to conventional wet machining, minimal quantity lubrication only uses low quantities of cooling lubricant (CL).

Motivation

As one of the pioneers of MQL technology we have an extensive knowlege of minimal quantity lubrication. Guhring standard MQL Chucks have been supplied a thousand fold throughout the world and are recognised by the automotive industry as ideal MQL solutions as either the one or two channel systems. Higher cutting speeds and longer tool life are possible thanks to adapted cooling as well as highest surface qualities thanks to the pure lubricant. Workpieces

and chips remain dry! Save the cost of de-greasing your workpieces as well as disposal of swarf and soluble oil.

Besides higher surface qualities and lower production costs, minimal quantity lubrication is especially of benefit to the environmental and health protection.


Advantages compared with conventional wet machining

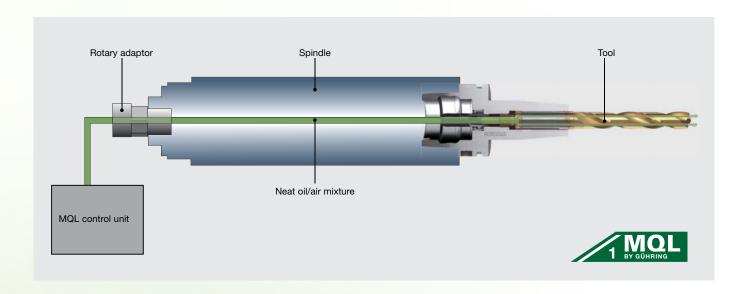
Costs, health & environment

- · reduction of cooling lubricant requirement
- · reduction in component cleaning costs
- · reduction in cooling lubricant disposal costs
- · reduction in swarf disposal costs
- protection of environment and health through lower emissions

Tools & component quality

- · reduction of thermal stresses at the tool point
- · less tool wear
- effective chip evacuation from deep holes
- higher surface qualities
- Instant cooling lubricant delivery
- · High compatibility
- Low process temperatures
- Less cooling lubrication requirement high coolant effect
- Direct response without losses

Delivery with 1- and 2-channel systems

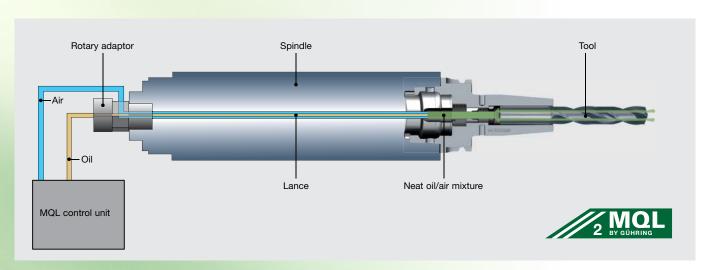

The provision of the MQL medium via the tool enables accurate delivery of the aerosol directly to the effective area. This ensures optimal delivery of the cooling lubricant independent of the accessibility of the machining location.

Thus, large drilling depths and high cutting speeds can be achieved. MQL systems with internal cooling lubricant delivery are divided into 1-channel and 2-channel systems.

1-channel MQL system

With a 1-channel system, the aerosol is mixed in an external MQL unit. The air-oil-mixture is transported directly to the

tool via the aerosol line, the rotary adaptor and the spindle. Only a supply line is required.



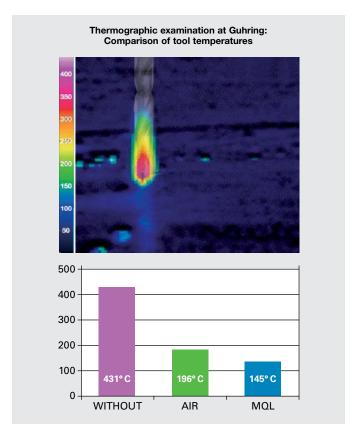
2-channel MQL system

With a 2-channel system cooling lubricant and air are separately transported via two channels through the tool spindle to the tool holder and then mixed there. A spindle mounted lance transports the oil and suppresses the centrifugal effect and therefore the possibility of de-mixing processes in the spindle. In comparison to the 1-channel system the spindle speed can be increased considerably.

An integrated quick valve system controls the optimal dosage of oil volume. Oil and air can be mixed in almost unlimited quantities with this system.

The route from the mixing chamber to the point of destination is only minimal resulting in a rapid response time and allowing a very quick alteration of the volume of neat oil.

Machine design to suit MQL

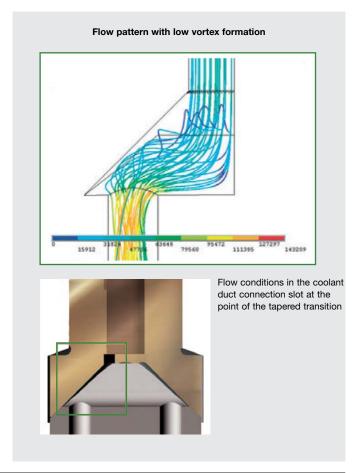

Because with MQL the heat generated from machining is not dissipated away from the workpiece and out of the machine by the cooling lubricant, the design of the machine must meet certain requirements in order to dissipate the heat. Horizontal machine walls or pipelines should be avoided in order to prevent the build-up of chips. When designing the

machine, cover panels should be planned to separate the various components. This way, a thermal separation can be ensured. Furthermore, the drive elements should be protected from metal swarf with cover panels.

Tools to suit MQL

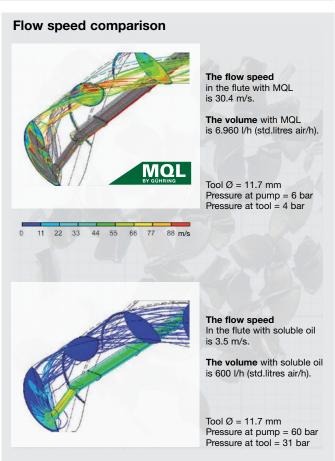
The same applies for the tool geometry: tools must be designed so that

- heat generation is minimised during the machining process (i.e. through sharp cutting edges and a positive rake angle),
- friction is minimised (i.e. through a width reduction of the leading margins in comparison to the wet tool and increasing the back taper of the tool),
- heat transfer between chip and tool is reduced (i.e. through heat insulating hard coatings and polished tool surfaces to reduce the friction between chip and face),
- heat transfer between chip and workpiece is reduced (i.e. through improved chip evacuation from the hole or from the workpiece surface respectively),
- improved chip evacuation and therefore in-creased process reliability is provided by a MQL-suitable coating.


Coolant duct design

- polished flutes minimise friction between chip and tool
- spiral-fluted drilling tools facilitate chip evacuation
- burr-free coolant ducts for even flow resistance

Coolant delivery to suit MQL


The geometric design of the shank end is of main significance for a safe delivery of the lubricant. In order to guarantee efficiency and process reliability oft he drilling tools the following basic requirements must be implemented:

- minimal dead areas that could lead to consolidation of coolant
- sealed coolant transfer surface between shank end and delivery screw preventing the escape of coolant in the clamping area of the chuck or in the internal areas of HSK (preventing swarf deposits that could lead to concentricity errors following the next tool change)

Flute design to suit MQL

The flute has the task to mould the chip in order to break it as small as possible. With minimal quantity lubrication and dry machining, it is extremely important to provide the chip with minimal frictional resistance in the rear area, in order to ensure a problem-free chip evacuation. This is aided by an optimised flute form as well as a specially polished fute surface.

Technical Section

Values for cutting speeds

Following you will find cutting rates for rotary machining. These are guide values and should serve as an orientation. The values can be further adapted following the initial assessment of the machining result in order to achieve optimal quality and cycle time.

Reaming allowance 0.3 mm - 2 mm

Material	Cutting speed v _c (m/min)	Cutting feed fz (mm)
Al wrought alloys	200 - 400	0.05 - 0.25
Al cast alloys < 9 % Si	200 - 800	0.05 - 0.2
Al cast alloys up to 12 % Si	300 - 600	0.05 - 0.2
Al cast alloys up to 17 % Si	200 - 400	0.05 - 0.2
Magnesium wrought alloys	250 - 400	0.05 - 0.15

Drilling

Material	Cutting speed v _c (m/min)	Cutting feed fz (mm)
Al wrought alloys	200 - 500	0.08 - 0.25
Al cast alloys < 9 % Si	350 - 800	0.08 - 0.15
Al cast alloys up to 12 % Si	350 - 800	0.08 - 0.15
Al cast alloys up to 17 % Si	200 - 400	0.08 - 0.15
Magnesium wrought alloys	400 - 600	0.05 - 0.15

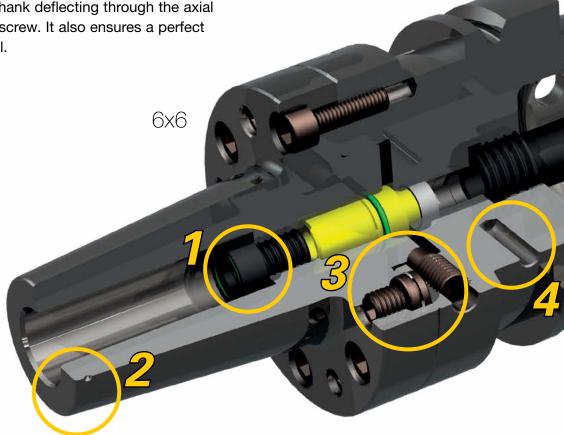
Milling

Material	Cutting speed v _c (m/min)	Cutting feed fz (mm)
Al wrought alloys	700 - 3000	0.05 - 0.3
Al cast alloys < 9 % Si	900 - 2500	0.05 - 0.25
Al cast alloys up to 12 % Si	900 - 2500	0.05 - 0.2
Al cast alloys up to 17 % Si	700 - 2000	0.05 - 0.2
Magnesium wrought alloys	700 - 2000	0.05 - 0.2

Module alignment adapter 4x4 and 6x6

Guhring modules Spot-on tool setting

Guhring modules 6x6 and 4x4 are the perfect solution for a quick, simple and μ -accurate setting of tools in highly precise manufacturing areas such as fine machining.


The advantages for the user:

- up to 70% time saving in "modular" tool pre-setting
- cost reduction
- highly accurate, wobble-free tool setting
- an extremely solid and rigid connection
- cooling lubricant delivery without loss or flow disruption

Whilst Module 4x4 is the market compatible solution the Guhring Module 6x6 is providing further opportunities for modular technology to satisfy the highest demands. On Guhring's Module 6x6 the setting screws for radial and axial setting sit much closer to each other than on conventional modules. This allows the elimination of errors in close proximity to the measuring point – even with 6-fluted tools with pinpoint accuracy!


1 Length setting screw with axial force damping

For conventional cooling lubrication the new length setting screw with axial force damping can be applied in both modules. It ensures accurate, tension-free shrink fitting by preventing the tool shank deflecting through the axial pressure on the setting screw. It also ensures a perfect length setting of the tool.

2 Positioning mark

Both modules possess a positioning bore for the first tool cutting edge. It is in alignment with the first setting screws for the radial and axial setting of the module. This enables a quick and simple as well as optimal setting of the entire holder-module-tool system.

Setting screws

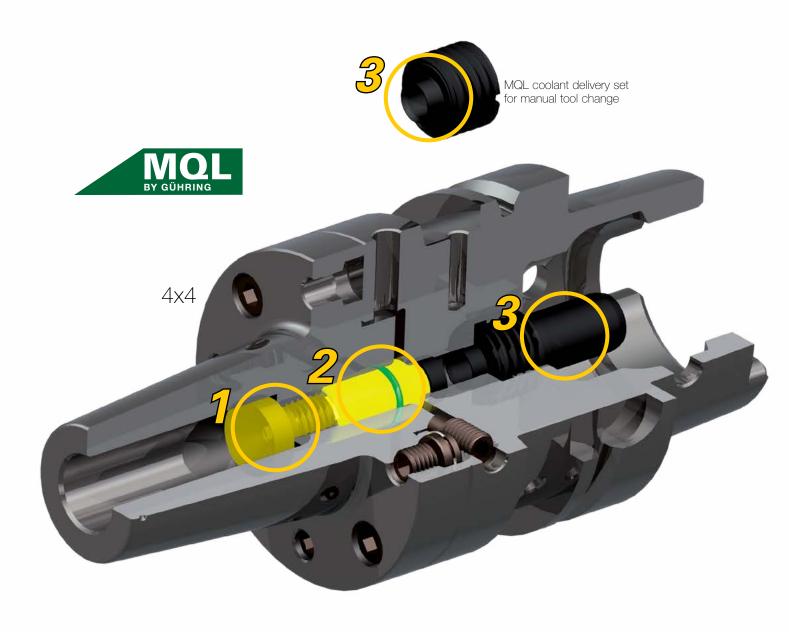
Whilst the market-compatible module 4x4 possesses 4 setting screws each for the axial and radial setting, the respective 6 setting screws of the module 6x6, thanks to being positioned closer together, provide an even more precise setting of the module relative to the cutting edges of the tool. They enable a quick, simple and highly accurate concentricity adjustment. Setting to 2 µm can be achieved with a time saving of up to 70%.

The marking of the setting screws from 1 to 6 or 4 respectively simplifies the orientation of the first tool cutting edge in consideration of the positioning bore.

Location bore for balancing screw

The module 6x6 as well as the module 4x4 possess 6 balancing bores. Thanks to being close to each other they enable a quick balancing in close proximity of the imbalance. The positioning of the balancing bores having a large effective diameter and thread depth provides a highly effective balancing capability.

Guhring modules Optimal cooling lubricant delivery


The modules 6x6 and 4x4 have both been designed for conventional cooling lubrication as well as minimal quantity lubrication (MQL). Whatever type of cooling lubrication the user

decides on, the delivery system components required are 100% compatible. Subsequently, it is possible to convert any modules in stock without a problem.

MQL length setting screw

The tool sits with its conical, MQL suitable shank end in the corresponding head shape of the MQL length setting screw. A sealing lip ensures a loss-free cooling lubricant delivery to the tool.

2 Delivery unit

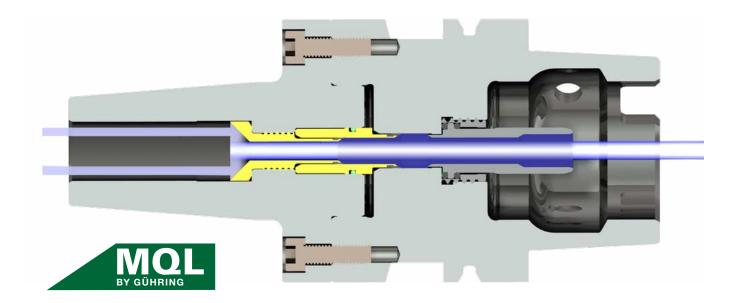
The delivery unit feeds the cooling lubricant through the tool holder without dead areas. For this, it is fitted with an O-ring and a special sealing lip. Particularly with MQL machining, a loss-free coolant delivery in this area is decisive for an optimal delivery to the cutting edges.

MQL coolant delivery set (Guhring no. 4939 or 4940)

A loss-free cooling lubricant delivery between spindle and tool holder is provided by MQL coolant delivery sets 4939 for automatic and 4940 for manual tool change.

Coolant delivery set for conventional cooling lubrication (Guhring no. 4949)

Alternatively, for conventional cooling lubrication the coolant delivery set 4949 is applied, that is 100% compatible with MQL coolant delivery sets.


Guhring modules MQL without loss

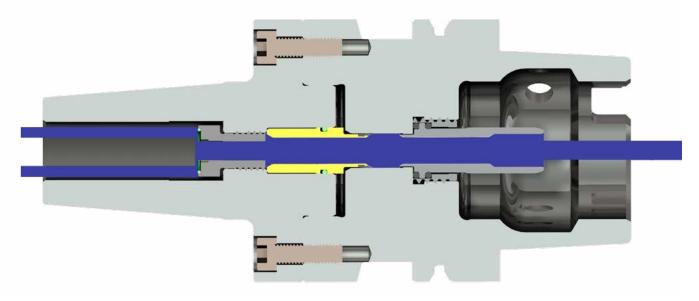
Particularly with minimal quantity lubrication (MQL) the loss- and flow disruption-free delivery of minimal cooling lubrication quantities to the cutting edge of

the tool is of vital importance for an optimum and reliable machining process.

Guhring's delivery system: MQL length setting screw and intermediate sleeve

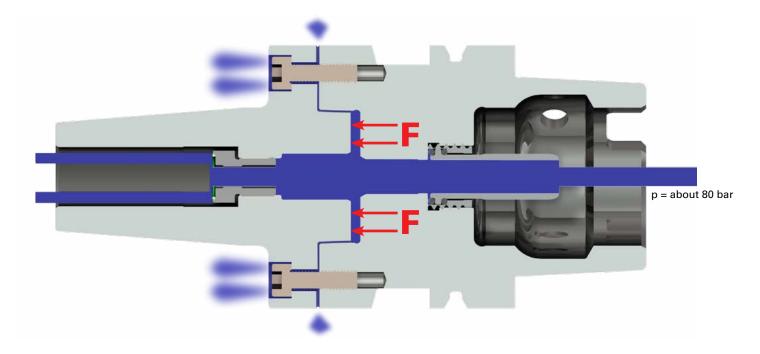
The cooling lubricant is supplied in a straight line without restriction or turbulence from the machine through the tool holder to the cutting edge. Guhring's delivery system can also be retro-fitted to other tool holders!

Guhring modules


Loss-free conventional cooling lubricant delivery and hydraulic tension

The benefits of Guhring's Modules are not only the quick, simple and highly-accurate tool setting. But the optimal cooling lubricant delivery

without restriction or turbulence ensures a perfect machining result thanks to loss-free cooling and lubrication of the tool's cutting edges.

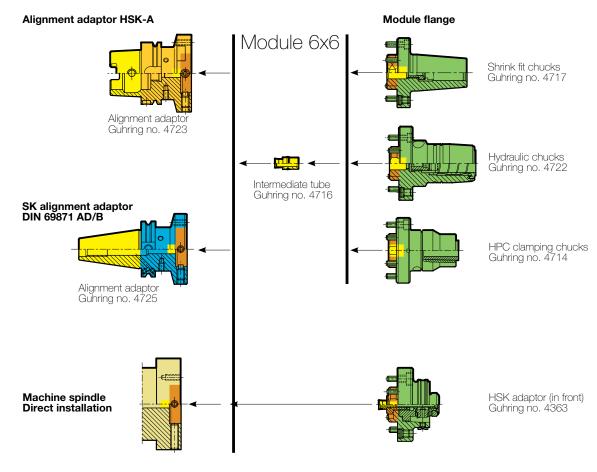

Guhring's delivery system for conventional cooling lubrication with intermediate sleeve

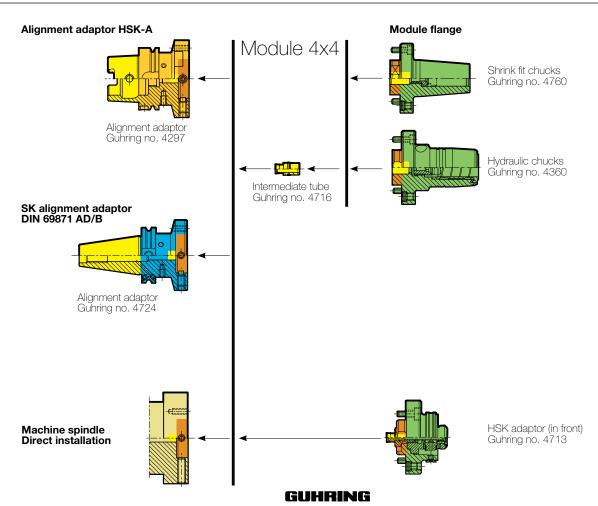
The cooling lubricant is supplied in a straight line without restriction or turbulence from the machine through the tool holder to the cutting edge.

Market conventional configuration without delivery system

The cooling lubricant deflects in the tool holder and the coolant exits into and from hollow areas in the holder. In addition, the cooling lubricant exerts force on the piston surfaces due to the high pressure of about 80 bar resulting in hydraulic tension and concentricity errors.

Guhring modules Module 6x6 – the advantages at a glance


- quick and targeted µ-accurate setting thanks to the close proximity of axial and radial setting screws to the error measuring point. Ideal for 6-fluted tools with a perfect fit to the cutting edge.
- quick and targeted balancing thanks to 6 balancing bores and threads providing a high balancing capacity.
- optimal setting results with multi-flute PCD/CBN fine machining tools or Guhring's HR 500 high performance reamer with 6 cutting edges.
- especially rigid connection thanks to 6 fastening screws.
- accurate wobble setting and optimal rigidity thanks to a high pre-clamping torque.
- minimal 'settlement behaviour' offering highest accuracy over a long application period.
- universal and modular designed system with hydraulic chucks, shrink fit chucks or HPC clamping chucks as well as HSK or SK interface.
- available in combination with monolithic special tools.


Guhring modules Module 4x4 – the advantages at a glance

- market compatible module
- extensive range, of modular design
- optimal cooling lubricant throughput with conventional cooling as well as with MQL (optional)
- hydraulic chucks and shrink fit chucks with increased insertion depth to current Guhring standard for conical shank ends and long MQL shank

Guhring modules Module system summary 6x6 and 4x4

Adjusting Guideline GM300 – Module Adapter 4x90° / 6x60°

1. ASSEMBLY AND ALIGNMENT OF HOLDER MODULE WITH RADIAL ADJUSTMENT

1.1 CLEAN TAPER AND PLANE SURFACES OF HOLDER MODULE AND HOLDER ADAPTER.

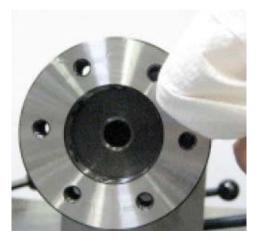
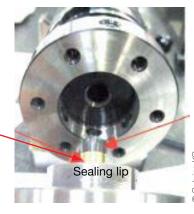


FIG. 1: Holder module

FIG. 2: Holder adapter

ATTENTION


This assembly step is only necessary when Gühring module holders are applied. Why? Because only with Gühring module holders coolant leak tightness between holder module and holder adapter can be achieved via an intermediate sleeve.

Insert intermediate sleeve in holder module to limit stop of insertion hole.

Intermediate sleeve incl. O-ring + sealing lip TiN-coated

1) Initially lightly oil the sealing lip.

- 2) Carefully* insert sealing lip in central holder bore, then fit module in adapter.
- *to avoid damage

128

1.2 FIT HOLDER MODULE. TIGHTEN FASTENING SCREWS TO 50% OF THE SPECIFIED TORQUE (SEE TABLE PAGE 130).

© Guhrina KC

1.3 POSITION DIAL GAUGE ON THE CONCENTRIC SETTING COLLAR (GROUND COLLAR ON THE MODULE DIAMETER). TAKE THE HIGHEST MEASURING POINT AND "ZERO" THE DIAL GAUGE.

Adjusting Guideline GM300 – Module Adapter 4x90° / 6x60°

1.4 ROUGHLY ALIGN THE HOLDER MODULE (APPROX. 0.01 MM). LOOSEN ADJUSTING SCREWS AGAIN FOLLOWING ACTUATION.

© Guhring KG

1,5 TIGHTEN THE FASTENING SCREWS TO THE SPECIFIED TORQUE.

Module diameter	Fastening screw	Torque [Nm]
60	DIN 912-M5x16-12.9	8,7
70	DIN 912-M6x20-12.9	15
80	DIN 912-M6x20-12.9	15
100	DIN 912-M8x25-12.9	36
117	DIN 912-M8x25-12.9	36
140	DIN 912-M10x30-12.9	72

Adjust concentricity with the adjusting screws. Loosen adjusting screws again following actuation. Repeat the process until the concentricity error is ≤ 3 µm. Once the concentricity has been adjusted lightly tighten the adjusting screws and re-check concentricity.

- (

2. ALIGNMENT OF HOLDER MODULE TO ADJUST RUN OUT

© Guhring KG

- 2.1 To adjust run out the dial gauge is positioned at the front concentricity check point, cutting edge guide pads or at a suitable location. Carry out run out correction via the adjustment screws. Do not loosen the adjustment screws following actuation.
- 2.2 Once the run out is set to \leq 3 μ m, re-check the concentricity on the module collar and correct if necessary. Should the concentricity require correction the run out must subsequently be checked again.

Adjusting Guideline Expansion joint fine boring tools

GENERAL

- all expansion joint tools are delivered pre-set if not specified otherwise.
- the countersunk head screws are screwed tight and sealed.
- with each new setting both setting screws must be without pre-tension.
- turn anti-clockwise to loosen the pre-tension...

ATTENTION

As a rule, the adjustment of the cutting edge with the setting screws 1 and 2 is performed clockwise.

DIAMETER ADJUSTMENT

- 1. First, turn adjusting screw 1 clockwise and adjust to approximately 10 µm **above** the diameter setting dimension (see FIG. 1 and FIG. 3)
- 2. Then via adjusting screw 2 reset the diameter, consciously set too large, play-free to the required setting dimension of the diameter (see FIG. 2 and FIG. 3). This "locks" the entire system.

FUNCTIONAL PRINCIPLE OF "EXPANSION JOINT/ROCKER"

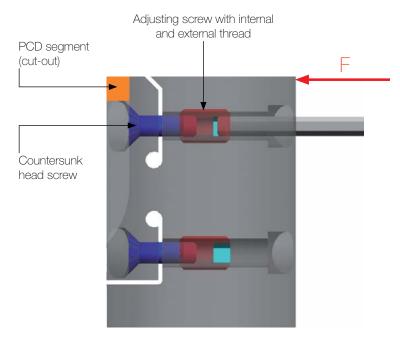


FIG. 1:
Adjusting screw 1 (above)
adjust clockwise / loosen anti-clockwise

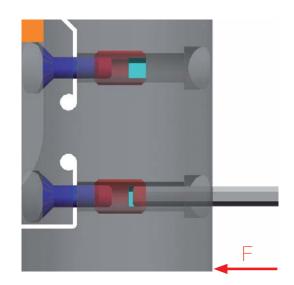
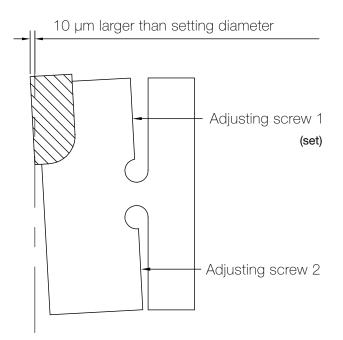


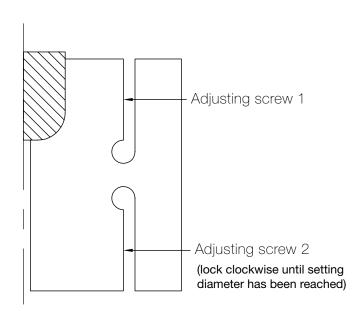
FIG. 2:
Adjusting screw 2 (below)
lock clockwise / loosen anti-clockwise

Adjusting Guideline Expansion joint fine boring tools

TORQUE

Diameter range [mm]	Adj. range per radius [µm]	Max. Torque [Nm]	SW [mm]
18 – 24	30	0,8	2
24 – 30	50	0,8	2
30 – 38	70	1,5	2,5
38 – 50	80	4	3
> 50	150	6	4


ATTENTION


The indicated maximum torques per nominal size may not be exceeded or reduced when adjusting and locking the expansion adjustment due to potential damage.

The recommended adjusting ranges and max. torques are set out in the table.

ADJUSTING AND LOCKING DETAILS

FIG. 3

^{*} only if the guide values are adhered to is the perfect functioning of the tool ensured!!

Adjusting Guideline Expansion Screw – MV1000

IN GENERAL

µm-accurate adjustment of the diameter is possible by turning the expansion screw. The adjustment range is max. 0.02 mm.

For Reaming operations with PCD or CBN tipped tools, Guhring has developed a unique solution, opening up completely new possibilities regarding accuracy and economic efficiency. Reaming tools with these technologies offer the user the following clear competitive advantages:

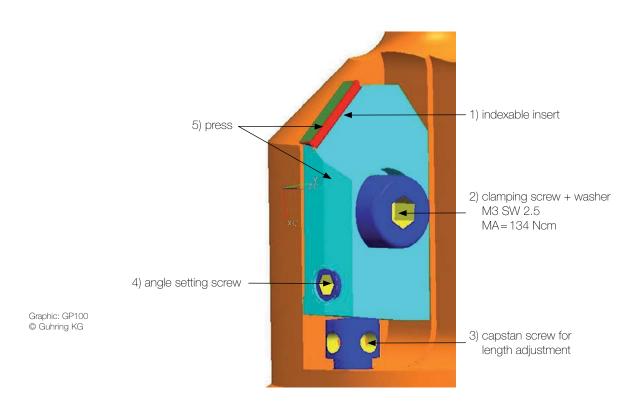
- Simple, quick and highly accurate diameter setting for first and second step.
- Both tool diameters can be re-adjusted when tool is in clamped condition.
- Machining of through and blind holes thanks to the integrated expansion screw in the tool point.
- Highest feed rates thanks to several cutting edges.
- Reduction in machining times.
- Maximum accuracy and extreme tool life.

Coolant Delivery directly to the cutting edges via expansion screw

- Optimal coolant delivery to the cutting edges thanks to radial coolant exits in the expansion screw.
- Optimal tool lubrication.
- Optimal chip evacuation from the hole.

Adjusting Guideline Variable Clamping Component – GP100

IN GENERAL


The angle to the center axis is manufactured 0.5° smaller than the corresponding nominal dimension and possesses a +1° adjustment range.

The clamping claw is adjustable in length by +/- 0.2 mm from the nominal dimension. Tools are supplied pre-set.

SET-UP/FITTING

When replacing the indexable insert (1) proceed as follows:

- Loosen length setting screw (4) and angle setting screw by half a turn.
- Loosen / dismantle clamping screw (2).
- Clean and assemble components, lightly oil clamping screw (2).
- Gently tighten clamping screw (2) (approx. 20 Ncm). While doing so, press indexable insert and clamping claw in direction of arrow with thumb and index finger.
- Angle setting to 0.1° ahead of nominal dimension.
- Length setting to 0.05 less than nominal dimension.
- Angle setting screw (4) to nominal dimension.
- Length setting (3) to nominal dimension.
- Tightening clamping screw (2) to 134 Ncm.

Adjusting Guideline Threaded Wedge Adjustment (TWA) Indexable Inserts Installation

1. ASSEMBLY

- 1.1 Lightly lubricate the bottom and the walls of the location bore of the TWA as well as the thread of the setting screw with MOS2 assembly paste.
- 1.2 Locate the hexagonal key through the wedge into the setting screw and insert together into the base of the location bore of the adjustment unit (fig.1).
- 1.3 Using the hexagonal key push the setting screw into the radial recess at the base of the bore and screw-in the wedge anticlockwise. When doing this the indexable insert contact surface on the wedge must be positioned towards the indexable insert seat (push the wedge from above onto the setting screw, so that the thread of the wedge can locate onto the setting screw). If when screwing in the wedge the collar of the setting screw "jams" in the location bore (noticeable through the setting screw being difficult to turn), push the entire adjustment unit fully into the location bore with the hexagonal key, if necessary resolve "jam" via clockwise rotation (fig. 2).
- 1.4 Lightly lubricate the indexable insert contact surface on the wedge with MOS2 assembly paste and screw in indexable insert in clockwise direction into the indexable insert seat with indexable insert clamping screw (lightly lubricate thread).
- 1.5 The disassembly is carried out in the reverse order.

2. OPERATION

- 2.1 Using a Torx key lightly tighten the indexable insert clamping screw in a clockwise direction to the smallest diameter setting (wedge and setting screw).
- 2.2 Adjust indexable insert to 0.05 mm of diameter before the final dimension: Insert the hexagonal key in the setting screw and adjust the diameter in clockwise direction (fig. 4). Then tighten the indexable insert clamping screw to the specified tightening torque.
- 2.3 Adjust the indexable insert to the final dimension.
- 2.4 If the diameter has already been exceeded, loosen the adjustment in anti-clockwise direction until the wedge noticeably loosens and re-adjust in clockwise direction. To do this the indexable insert clamping screw does not require loosening.
- 2.5 When replacing the indexable insert or when required lubricate the contact surfaces and the thread of the TWA adjustment unit with MOS2 assembly paste.

136

Adjusting Guideline Threaded Wedge Adjustment (TWA) Indexable Inserts Installation

3. TIGHTENING TORQUE INDEXABLE INSERT CLAMPING SCREW:

Thread Size	Torx Size	Tightening Torque [Ncm]
M 4 / M4 x 0.5	15	515
3.5	15	345
M 2.5	8	128
M 2.5 / M2.2	7	101

4. KEY SIZES OF THE TWA ADJUSTMENT UNITS/ADJUSTMENT TRAVEL OF THE INDEX. INSERTS:

Insert Size	Torque Size	in radius (at ¼ rotation of setting screw)
0602	SW 1.5	0.015 mm with indexable insert with
09T3	SW 2.5	7° clearance angle or 0.024 with indexable
1204	SW 3.0	insert with 11° clearance angle

Fig. 1: Assembly (s. No. 1.2)

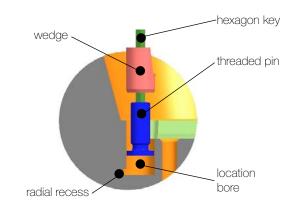


Fig. 3: Operation (s. No. 2.1)

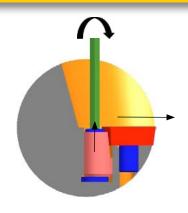


Fig. 2: Assembly (s. No. 1.3)

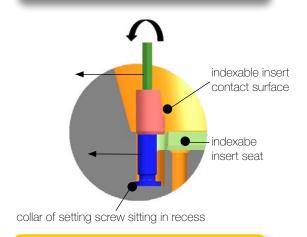
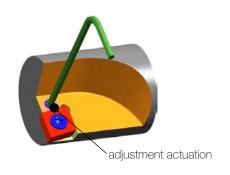



Fig. 4: Operation (s. No. 2.2)

Adjusting Guideline Threaded Wedge Adjustment (TWA) Cartridges Installation

1. ASSEMBLY

- 1.1 Lightly lubricate the bottom and the wall of the location bore of the TWA as well as the thread of the setting screw with MOS2 assembly paste.
- 1.2 Enter the hexagonal key through the wedge into the hexagonal socket of the setting screw and insert together into the location bore of the adjustment unit to the bottom of the bore. (fig.1).
- 1.3 Using hexagonal key push setting screw into the radial recess at the bottom of the bore and screw-in the wedge anti-clockwise into the location bore to the block. In doing so the cartridge contact surface must be positioned opposite to the radial recess. Push the wedge from above onto the setting screw, so that the thread of the wedge can thread onto the setting screw (fig.2). If when screwing in the wedge the setting screw collar "jams" in the location bore (noticeable through the threaded pin being difficult to turn), press the entire adjustment unit into the location bore with the hexagonal key, if necessary resolve "jam" via clockwise rotation.
- 1.4 Lightly lubricate cartridge contact surface on the threaded key and the cartridge clamping screw thread with MOS2 assembly paste and screw in the cartridge clockwise into the cartridge seat with the cartridge clamping screw.
- 1.5 Screw in the indexable insert into the indexable insert seat of the cartridge (see tightening torque indexable insert clamping screws).
- 1.6 The disassembly is carried out in the reverse order.

2. OPERATION

- 2.1 Using key lightly tighten the cartridge clamping screw in a clockwise direction to the smallest dia. setting.
- 2.2 Adjust taper or diameter respectively via the TWA adjustment (fig. 3), whilst doing so move to within 0.05 mm in diameter of the setting dimension of the indexable insert (if necessary loosen cartridge clamping screw again).
- 2.3 Using key tighten cartridge clamping screw in clockwise direction (see tightening torque for cartridge clamping screws).
- 2.4 Adjust indexable insert setting dimension via TWA adjustment, if the dimension is exceeded simply loosen the TWA again and re-adjust (fig. 4).
- 2.5 If required lubricate the contact surfaces and the thread of the TWA adjustment unit.

Adjusting Guideline Threaded Wedge Adjustment (TWA) Cartridges Installation

3.1 MAX. TIGHTENING TORQUE CARTRIDGE SCREWS:

Thread Size	Torque Size	Tightening Torque [Ncm]
M6	25	1.300
M5	20	900
M3.5	15	345

3.2 MAX. TIGHTENING TORQUE INDEX. INS. CLAMP. SCREWS:

Thread Size	Torque Size	Tightening Torque [Ncm]
M 4 / M4 × 0.5	15	515
3.5	15	345
M 2.5	8	128
M 2.5 / M2.2	7	101

4 KEY SIZES OF THE TWA ADJUSTMENT UNITS/TRAVEL OF CARTRIDGES:

Cartridges Size	Torque Size	Cartridges adjustment travel in radius
06	SW 1.5	0.024 mm at 1/4
09	SW 2.0	rotation
12	SW 3.0	of setting screw

axial adjustmentg: ±0.3mm (all sizes)

Fig. 1: Assembly (s. No. 1.2)

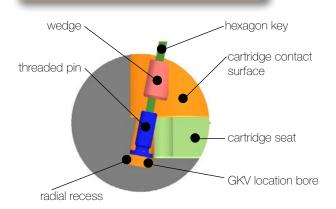


Fig. 3: Operation (s. No. 2.2)

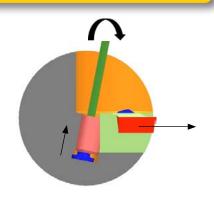


Fig. 2: Assembly (s. No. 1.3)

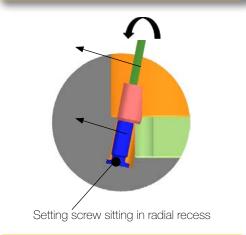
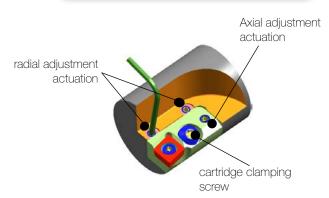



Fig. 4: Operation (s. No. 2.4)

139

GUHRING

Adjusting Guideline Face Milling Cutter – PF1000

1. ASSEMBLY OF ADJUSTMENT UNIT

- Grease thread and functional areas with Molykote[©] assembly paste G-N Plus.
- Screw the threaded pin into the adjustment bolt (from flat side) and insert into the sleeve (note correct side). (fig. 1)
- Aided by the supplied cylinder screw insert the adjustment unit into holder bore of the base body (if necessary turn threaded pin forwards or backwards) ensure the threaded pin is correctly aligned with the access bore.
- Engage the hexagon (SW3) of the threaded pin via the access bore and unscrew anti-clockwise to the stop. (fig. 2)

2. ASSEMBLY OF MILLING CUTTER INSERTS

- Insert cutter together with clamping wedge into the slot on the base body, to prevent misalignment of both components they must be pressed against the contact surfaces of the base body. (fig. 3)
- From the inner side, screw the spindle clockwise into the clamping wedge (Torx 25), grease the spindle thread and the contact surfaces of the spindle head beforehand with Molykote[©] assembly paste G-N Plus (fig. 4) (don't use lubricant containing copper!).
- · Assemble all inserts in the same way.

3. ASSEMBLY OF MILLING CUTTER HEAD TO MILLING ARBOR

(for tightening torques apply our torque wrench Guh. no. 4915)

• using the tightening screw (Guh. no. 3009) / clamping disc (Guh. no. 3008) screw the milling cutter head to the milling arbor observing tightening torques below:

Diameter	Torque size	Tightening torque
ø 63	SW 28	Ma = 40 Nm
ø 100	SW 10	Ma = 100 Nm
ø 160	SW 10	Ma = 120 Nm
ø 250	SW 14	Ma = 200 Nm
	ø 63 ø 100 ø 160	ø 63 SW 28 ø 100 SW 10 ø 160 SW 10

ø 80	SW 8	Ma = 70 Nm
ø 125	SW 12	Ma = 160 Nm
ø 200	SW 14	Ma = 200 Nm

- For screwing together Ø 63 apply the hexagonal special insert **Guh. no. 302921586**, for other sizes our hexagonal inserts **Guh. no. 4916**.
- Also grease the threads and the contact surfaces of the tightening / clamping screw head with the assembly paste;

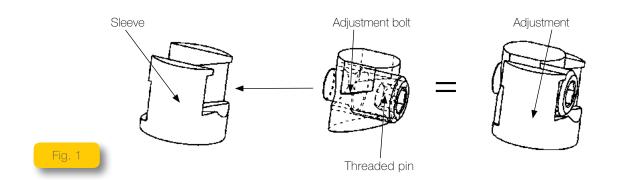
4. ADJUSTING THE MILLING CUTTER INSERTS

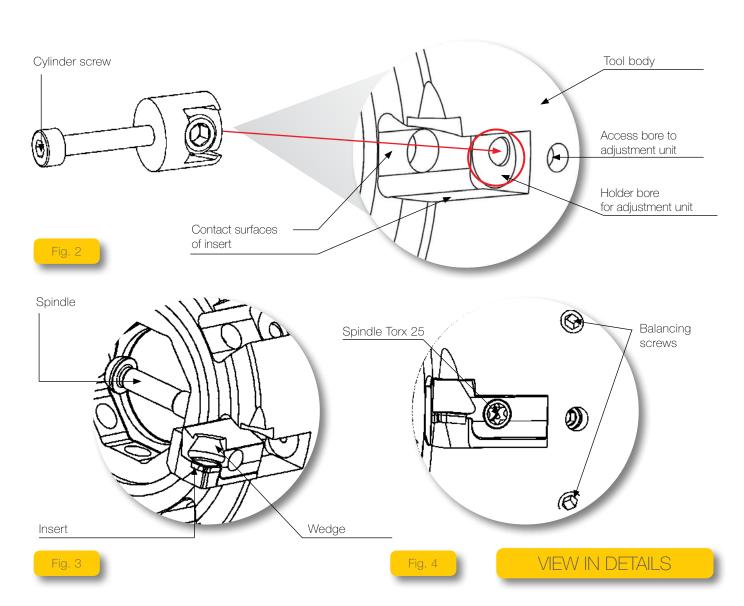
For tightening torques apply our torque wrench Guh. no. 4915.

- With all inserts in axially deepest position, tighten spindle to approx. 3-4 Nm (spindleTorx 25, apply Torx insert Guh. no. 4917).
- Adjust all inserts using angle screwdriver SW 3 (Guh. no. 4921) by turning the threaded pin of the adjustment unit clockwise to 0.02 mm before the setting measurement.
- Tighten all inserts in turn to 16 Nm.
- Adjust all inserts to setting measurement within max 0.004 mm.

140 **GUHRING**

Adjusting Guideline Face Milling Cutter – PF1000





5. BALANCING THE MILLING CUTTER HEAD

- It is generally recommended to balance the milling arbor individually.
- Fine balance complete milling assembly with supplied balancing screws.

Adjusting Guideline Face Milling Cutter – PF1000 / Ø 63

1. ASSEMBLY OF ADJUSTMENT UNIT

- Grease thread and functional areas with Molykote[©] assembly paste G-N Plus.
- Screw the threaded pin into the adjustment bolt (from flat side) and insert into the sleeve (note correct side) (fig. 1).
- Using the supplied cylinder screw insert the adjustment unit into holder bore of the tool body (if necessary turn threaded pin forwards or backwards) ensure the threaded pin is correctly aligned with the access bore.
- engage the hexagon (SW3) of the threaded pin via the access bore and unscrew anti-clockwise to the stop (fig. 2).

2. ASSEMBLY OF MILLING CUTTER INSERTS

- Insert cutter together with clamping wedge into the slot on the base body, to prevent misalignment of both components they must be pressed against the contact surfaces of the base body (fig. 3).
- From the outer side, screw the spindle (lightly grease both threads with Molykote® assembly paste G-N Plus) anti-clockwise into the clamping wedge (fig. 4) until the spindle projects into the inside of the milling head base body by approx. 2 threads (fig. 5). Position the nut on this thread and screw the nut on by turning the spindle clockwise. Now screw the spindle in further anti-clockwise, whilst constantly re-positioning the nut clockwise (screwing onto the spindle) until the spindle towards the centre is level with the nut (the re-positioning of the nut can be simplified via the bores on the external diameter of the nut with the help of a small pen key or similar).
- Now lightly tighten the spindle clockwise. Assemble all inserts in the same way. When assembled correctly there must still be play between the nuts (fig. 6). The tightening screw **Guh. no. 3009** must be able to be guided centrally between the nuts without excerting force. Also the spindle on the outer side of the milling head must not protrude out of the clamping wedge.

3. ASSEMBLY OF MILLING CUTTER HEAD TO MILLING ARBOR

(for tightening torques apply our torque wrench Guh. no. 4915)

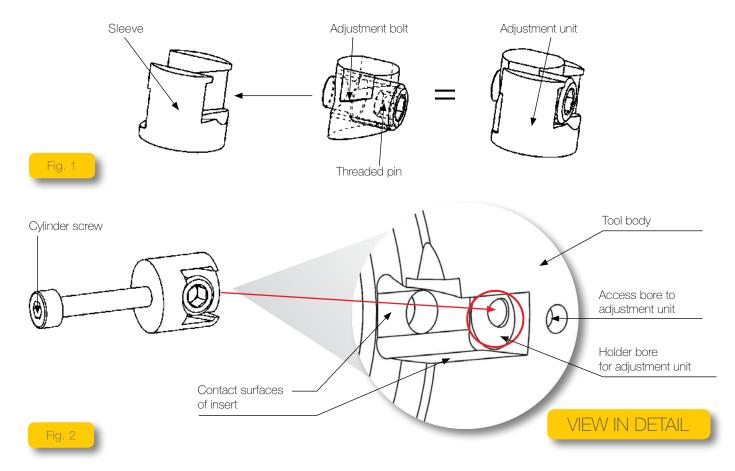
- Using the tightening screw, screw the milling cutter head onto the milling arbor, whilst observing the tightening torque:
 SW 28 → Ma = 40 Nm.
- Apply the hexagonal special insert **Guh. no. 302921586** for the tightening screw.
- Also grease the threads and the contact surfaces of the tightening / clamping screw head with the assembly paste.

142

Adjusting Guideline Face Milling Cutter – PF1000 / Ø 63

4. ADJUSTING THE MILLING CUTTER INSERTS

(for tightening torques apply our torque wrench Guh. no. 4915)

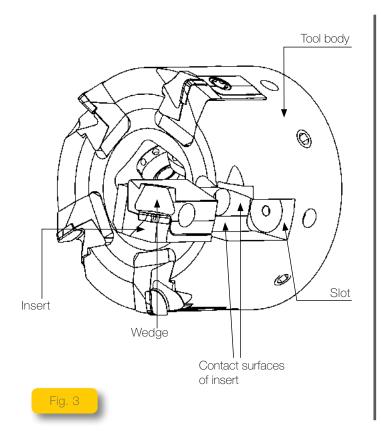

- With all inserts in deepest axial position, tighten spindle to approx. 3-4 Nm (spindleTorx 25, apply Torx insert Guh. no. 4917).
- Adjust all inserts using angle screwdriver SW 3 (Guh. no. 4921) by turning the threaded pin of the adjustment unit clockwise to 0.02 mm before the setting measurement.
- Tighten all inserts in turn to 11 Nm.
- Adjust all inserts to setting measurement within max 0.004 mm.

5. DISASSEMBLY OF INSERTS

- Loosen tightening screw Guh. no. 3009 (Code no. 63,000) anti-clockwise and unscrew.
- Loosen spindle screw connection (Torx 25) anti-clockwise, now unscrew the nut anti-clockwise (with the pen key)
 towards the centre of the spindle, whilst constantly re-positioning the spindle in clockwise direction (unscrewing from the
 clamping wedge).

6. BALANCING THE MILLING CUTTER HEAD

- It is generally recommended to balance the milling arbor individually.
- Fine balance complete milling assembly with supplied balancing screws.



Adjusting Guideline Face Milling Cutter – PF1000 / Ø 63

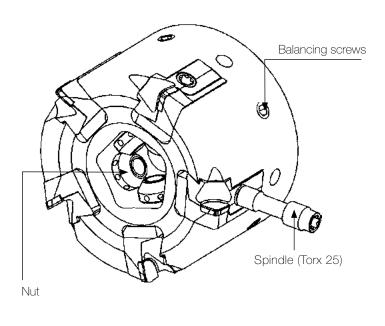
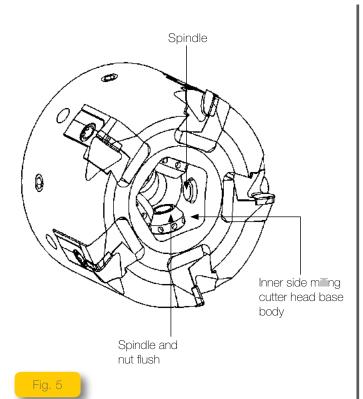



Fig. 4

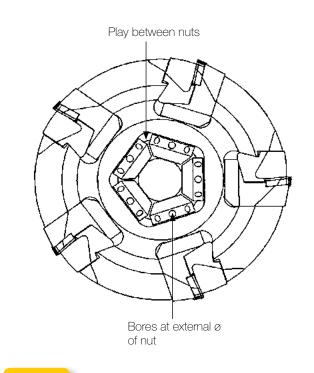
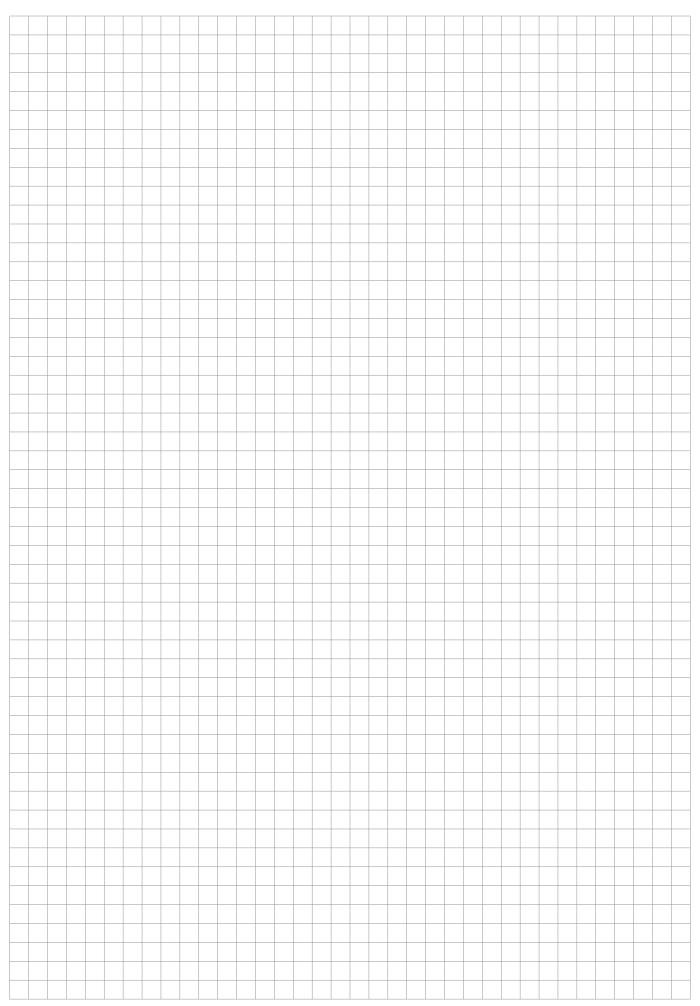
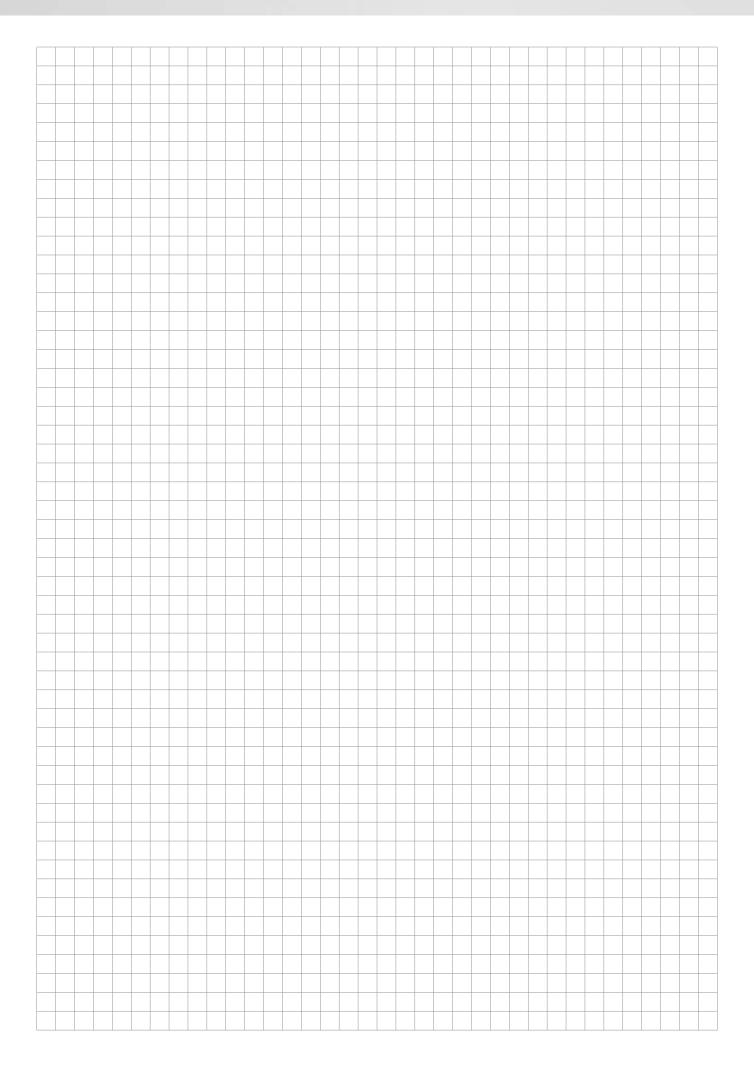
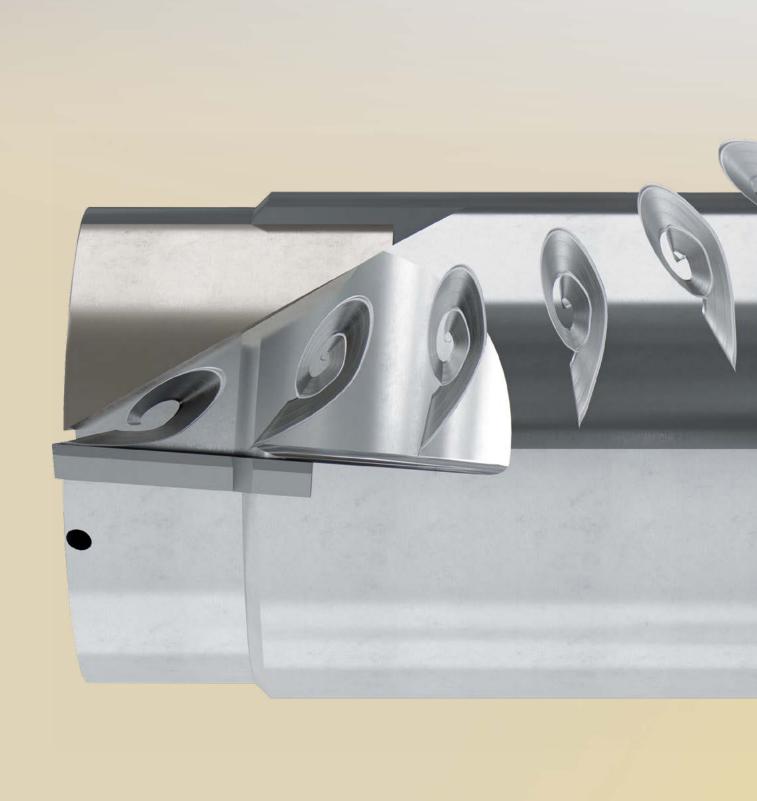





Fig. 6

GUHRING

PCD/CBNTECHNOLOGY

148 824/1441-VII-22 • Printed in Germany • 2014

